UNITED STATES SECURITIES AND EXCHANGE COMMISSION

WASHINGTON, D.C. 20549

FORM 8-K

CURRENT REPORT

Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): January 10, 2025

Larimar Therapeutics, Inc.

(Exact name of Registrant as Specified in Its Charter)

Delaware (State or Other Jurisdiction of Incorporation)

Three Bala Plaza East Bala Cynwyd, Pennsylvania

(Address of Principal Executive Offices)

001-36510 (Commission File Number) 20-3857670 (IRS Employer Identification No.)

19004 (Zip Code)

Registrant's Telephone Number, Including Area Code: (844) 511-9056

(Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

□ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

□ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

□ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

	Trading	
Title of each class	Symbol(s)	Name of each exchange on which registered
Common Stock, par value \$0.001 per share	LRMR	Nasdaq Global Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§ 230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§ 240.12b-2 of this chapter).

Emerging growth company \Box

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 8.01 Other Events.

On January 10, 2025, Larimar Therapeutics, Inc. (the "*Company*") posted on its website an updated slide presentation, which is attached as Exhibit 99.1 to this Current Report on Form 8-K and is incorporated herein by reference. Representatives of the Company will use the presentation in various meetings with investors, analysts and other parties from time to time.

Item 9.01 Financial Statements and Exhibits.

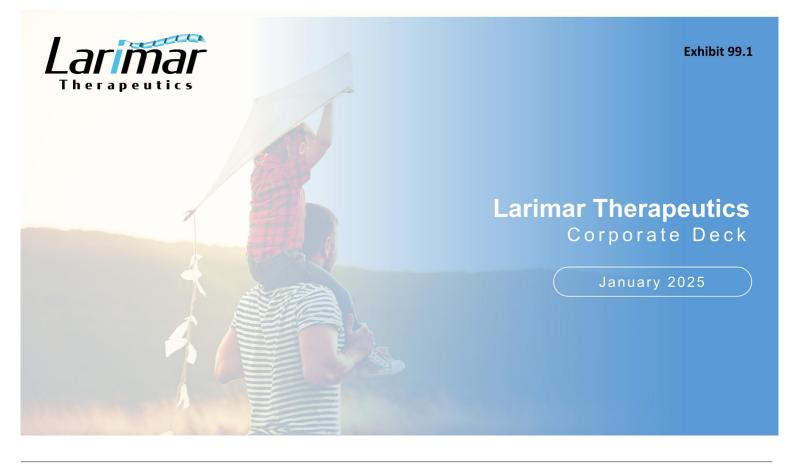
(d) Exhibits

Below is a list of exhibits included with this Current Report on Form 8-K.

Exhibit No.	Document
99.1	Larimar Therapeutics, Inc. Corporate Presentation, dated January 10, 2025*
104	Cover Page Interactive Data File (embedded within the Inline XBRL document)

* Filed herewith

SIGNATURES

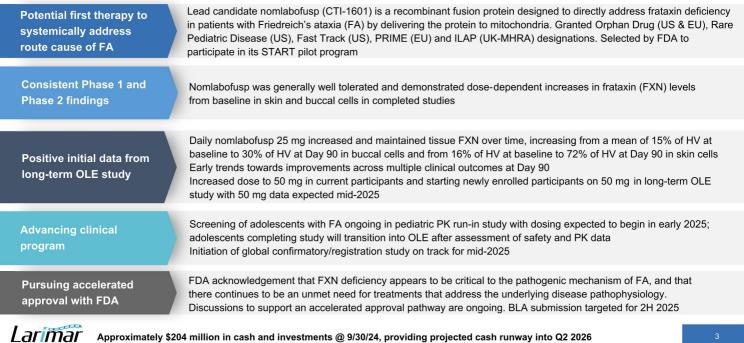

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Larimar Therapeutics, Inc.

Date: January 10, 2025

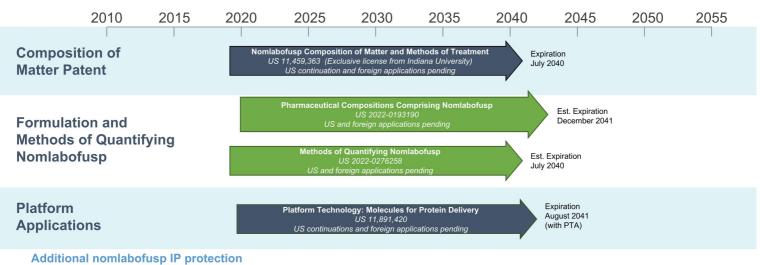
By: /s/ Carole S. Ben-Maimon, M.D.

Name: Carole S. Ben-Maimon, M.D. Title: President and Chief Executive Officer


Forward-Looking Statements

This presentation contains forward-looking statements that are based on the beliefs and assumptions of Larimar Therapeutics, Inc. ("Company") and on information currently available to management. All statements contained in this presentation other than statements of historical fact are forward-looking statements, including but not limited to Larimar's ability to develop and commercialize nomlabofusp (CTI-1601) and other planned product candidates, Larimar's planned research and development efforts, including the timing of its nomlabofusp clinical trials and non-clinical investigations and overall development plan expectations with respect to the FDA START pilot program, interactions with FDA, expectations regarding potential for accelerated approval or accelerated access and time to market and other matters regarding Larimar's business strategies, ability to raise capital, use of capital, results of operations and financial position, and plans and objectives for future operations.

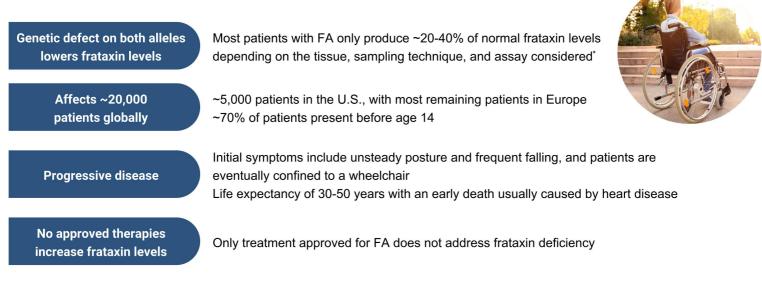
In some cases, you can identify forward-looking statements by the words "may," "will," "could," "should," "expect," "intend," "plan," "anticipate," "believe." "estimate." "predict," "project," "potential," "continue," "ongoing" or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. These statements involve risks, uncertainties and other factors that may cause actual results, performance, or achievements to be materially different from the information expressed or implied by these forward-looking statements. These risks, uncertainties and other factors include, among others, the success, cost and timing of Larimar's product development activities, nonclinical studies and clinical trials, including nomlabofusp clinical milestones and continued interactions with the FDA; that preliminary clinical trial results may differ from final clinical trial results, that earlier non-clinical and clinical data and testing of nomlabofusp may not be predictive of the results or success of later nonclinical or clinical trials, and assessments; that the FDA may not ultimately agree with Larimar's nomlabofusp development strategy; the potential impact of public health crises on Larimar's future clinical trials, manufacturing, regulatory, nonclinical study timelines and operations, and general economic conditions; Larimar's ability and the ability of thirdparty manufacturers Larimar engages, to optimize and scale nomlabofusp's manufacturing process; Larimar's ability to obtain regulatory approvals for nomlabofusp and future product candidates; Larimar's ability to develop sales and marketing capabilities, whether alone or with potential future collaborators, and to successfully commercialize any approved product candidates; Larimar's ability to raise the necessary capital to conduct its product development activities; and other risks described in the filings made by Larimar with the Securities and Exchange Commission (SEC), including but not limited to Larimar's periodic reports, including the annual report on Form 10-K, quarterly reports on Form 10-Q and current reports on Form 8-K, filed with or furnished to the SEC and available at www.sec.gov. These forward-looking statements are based on a combination of facts and factors currently known by Larimar and its projections of the future, about which it cannot be certain. As a result, the forward-looking statements may not prove to be accurate. The forward-looking statements in this presentation represent Larimar's management's views only as of the date hereof. Larimar undertakes no obligation to update any forward-looking statements for any reason, except as required by law.


Clinical-Stage Novel Protein Replacement Therapy Platform

HV: Healthy Volunteers

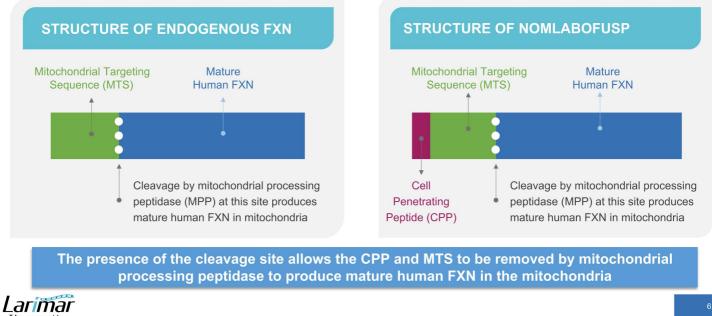
Larimar Technology is Supported by a Strong IP Portfolio

Granted nomlabofusp (CTI-1601) composition of matter patent extends into 2040



- US and foreign pending applications cover key biomarkers, analytical tools and methods of treatment for additional disease indications for nomlabofusp
- Nomlabofusp should be eligible for **12 years of market exclusivity** upon approval in the US (independent of patents) and at least **10 years of market** exclusivity upon approval in EU (independent of patents)

Friedreich's Ataxia (FA): A rare and progressive disease



* E.C. Deutsch et al. Molecular Genetics and Metabolism 101 (2010) 238–245.

Nomlabofusp is Designed to Deliver Additional Frataxin

Nomlabofusp (CTI-1601) maintains the cleavage site between the MTS and mature human frataxin (FXN)

FXN Levels Predict Disease Progression in FA

Lower FXN levels are associated with earlier onset of disease, faster rate of disease progression, and shorter time to loss of ambulation

Median Age of Onset and Rate of Disease Progression in Relation to FXN Levels

FXN Level* (% of Normal Level)	Age of Onset (Years)	FARS ** (Change/Year)
11.2	7	2.9
22.0	11	2.1
31.0	16	2.0
48.7	19	1.6

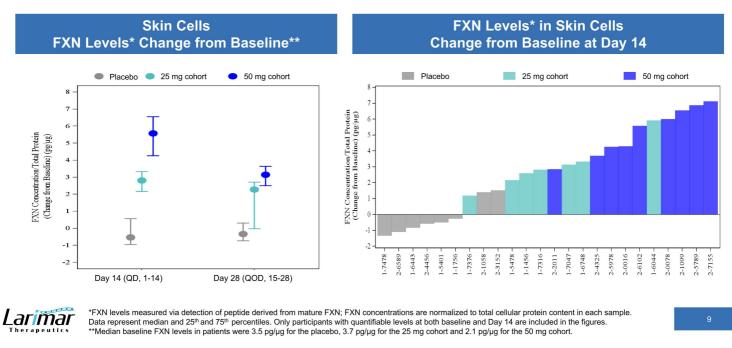
Adapted from H.L.Plasterer et al. PLoS ONE 2013 8(5):e63958

Median Age of Onset Predicts Time to Loss of Ambulation

Age of Onset (Years)	Median Time to Loss of Ambulation (Years)
< 15	11.5
15 to 24	18.3
> 24	23.5

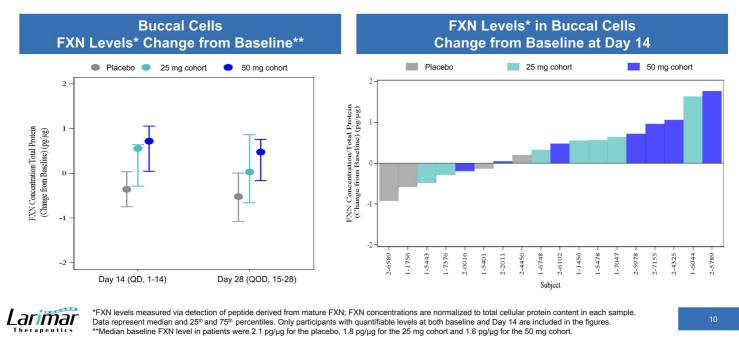
Adapted from C. Rummey et al. EClinicalMedicine. 2020 18:100213

*FXN levels measured in peripheral blood mononuclear cells (PBMCs). FXN levels as measured by % of normal demonstrated to be equivalent in PBMCs, buccal cells, and whole blood. **FARS: Friedreich's ataxia rating score, measures disease progression with a higher score indicating a greater level of disability.


Completed Ph 2 Dose Exploration Study (25 & 50 mg Cohorts)

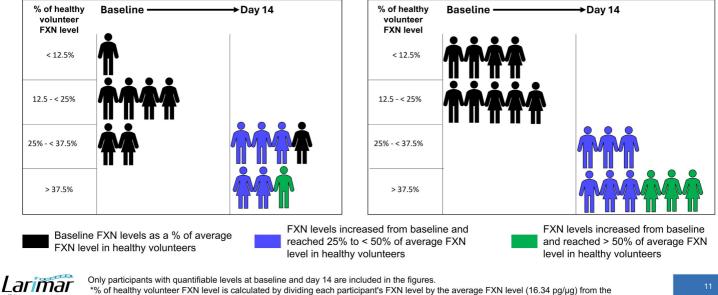
Goal: Further characterize PK/PD and assess safety to inform long-term dose and dose regimen

	28-day Treatment Period - nomlabofusp (CTI-1601) or placebo
1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
= Subcuta	aneous administration of nomlabofusp (CTI-1601) or placebo
= No Adm	inistration
	Study Details
Population	Ambulatory and non-ambulatory Friedreich's ataxia patients ≥18 years of age Nomlabofusp (CTI-1601) treatment naïve or participated (if eligible) in a previous Larimar study
Dose	Cohort 1: 25 mg Cohort 2: 50 mg
Key Endpoints	Frataxin levels in peripheral tissue, PK, safety and tolerability; other exploratory endpoints include lipids and gene expression levels
Number of Patients	Cohort 1: Enrolled 13 participants (9 on nomlabofusp; 4 on placebo) Cohort 2: Enrolled 15 participants (10 on nomlabofusp; 5 on placebo)
Key Results	Generally well tolerated; most common adverse events were mild and moderate injection site reactions Dose dependent increases of frataxin levels in tissues tested (skin and buccal cells) Baseline FXN levels in skin cells in the 50 mg cohort were < 17% of the average of healthy volunteers. After daily dosing for 14 days, FXN levels increased to 33% to 59% of the average of the healthy volunteers
arimar	8


Dose-Dependent Increase in FXN Levels in Skin Cells

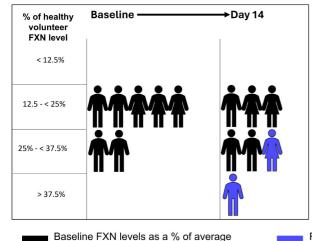
Participants dosed daily for 14 days, then every other day until day 28

Dose-Dependent Increase in FXN Levels in Buccal Cells

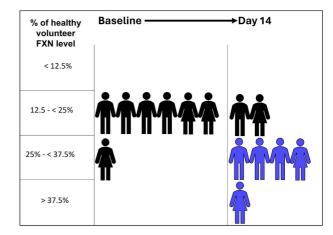

Participants dosed daily for 14 days, then every other day until day 28

Skin Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

50 mg of Nomlabofusp


25 mg of Nomlabofusp

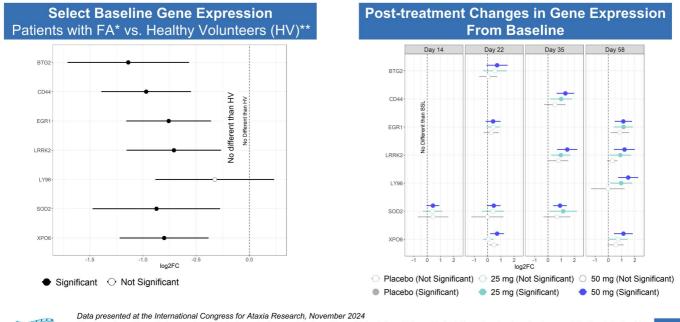
noninterventional healthy volunteer study (N=60).


Buccal Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

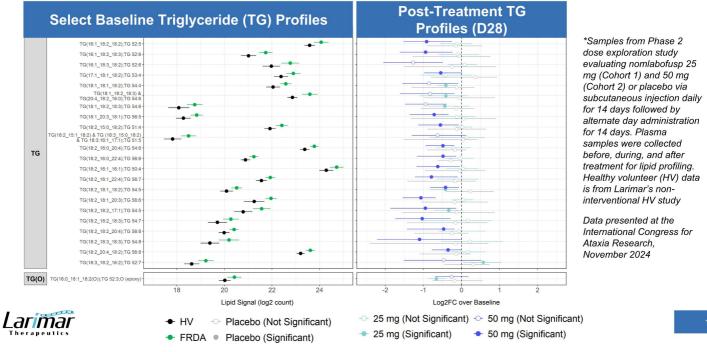
25 mg of Nomlabofusp

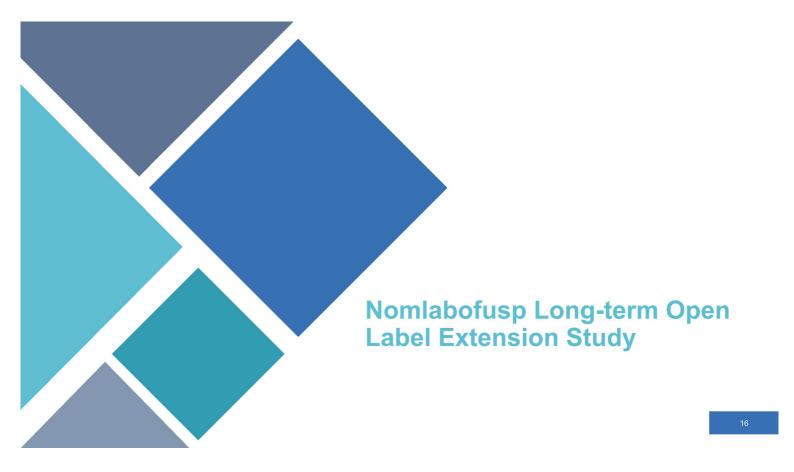
FXN level in healthy volunteers

50 mg of Nomlabofusp

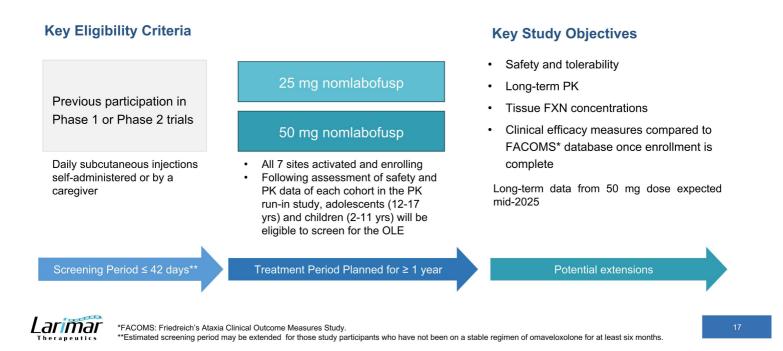

FXN levels increased from baseline and reached 25% to < 50% of average FXN level in healthy volunteers

Only participants with quantifiable levels at baseline and day 14 are included in the figures. *% of healthy volunteer FXN level is calculated by dividing each participant's FXN level by the average FXN level (8.24 pg/µg) from Larimar's noninterventional healthy volunteer study (N=60).


Increase Towards Normal Gene Expression in Adults with FA* Observed After Nomlabofusp Treatment

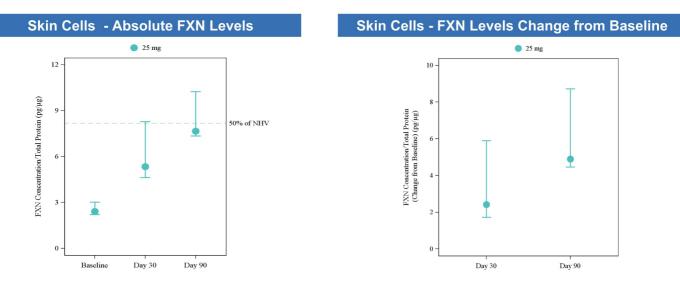


Larimar


Data presented at the International Congress for Ataxia Research, November 2024 *Samples from Phase 2 dose exploration study evaluating nomlabofusp 25 mg (Cohort 1) and 50 mg (Cohort 2) or placebo via subcutaneous injection daily for 14 days followed by alternate day administration for 14 days. Buccal samples were collected before, during, and after treatment for gene expression profiling **Data from Larimar's non-interventional healthy volunteer study

Decrease Towards Normal Lipid Profiles in Adults with FA* Observed After Nomlabofusp Treatment

Open-label Extension: 25 mg Completed, Increasing to 50 mg Daily

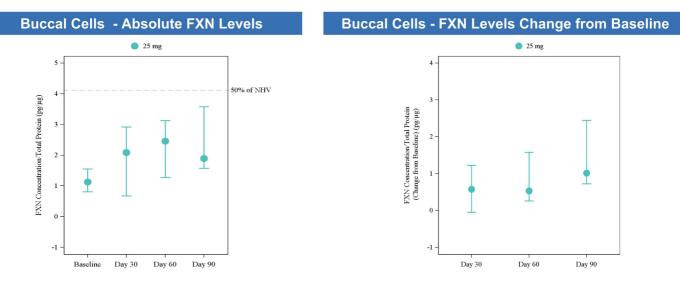

Positive Initial Data from Long-Term OLE Study in FA

Daily 25 mg nomlabofusp administered in 14 participants for up to 260 days

Generally well-tolerated with long-term daily administration	 Generally well tolerated for over 8 months SAEs occurred in two study participants that resolved in 24 hours Most common AEs were mild injection site reactions
25 mg daily increased and maintained tissue FXN levels over time	 Tissue FXN levels showed mean change from baseline of 1.32 pg/µg in buccal cells and 9.28 pg/µg in skin cells at Day 90 Increased from a mean of 15% of HV at baseline to 30% of HV in buccal cells and from 16% of HV to 72% of HV in skin cells at Day 90 Tissue FXN levels appear to reach steady state levels by Day 30 in buccal cells
Predictable long-term pharmacokinetics	 Rapidly absorbed after subcutaneous administration Reached steady state levels in plasma by Day 30 with no further accumulation Pharmacokinetic profile consistent with Phase 1 and Phase 2 studies
Early trends of improvement observed in clinical outcomes at Day 90	Early trends in mFARS, FARS-ADL, Modified Fatigue Impact Scale and 9 Hole Peg Test support the potential that daily nomlabofusp may lead to clinical benefit in patients with FA

Increased FXN Levels in Skin Cells Sustained Over Time

Participants dosed daily with 25 mg nomlabofusp for up to 90 days



FXN levels measured via detection of peptide derived from mature FXN; FXN concentrations are normalized to total cellular protein content in each sample. Data represent median and 25th and 75th percentiles. Only participants with quantifiable levels at all measurement points are included in the figures. 50% of normal healthy volunteer (NHV) FXN level is 8.17pg/μg from the noninterventional healthy volunteer study (N=60).

Increased FXN Levels in Buccal Cells Sustained Over Time

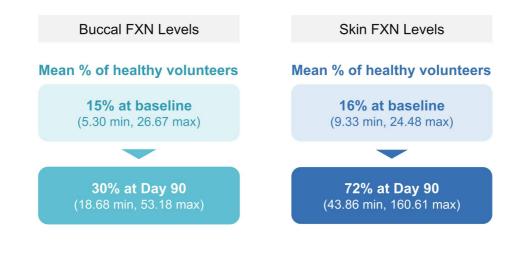
Participants dosed daily with 25 mg nomlabofusp for up to 90 days and reached steady state by 30 days

FXN levels measured via detection of peptide derived from mature FXN; FXN concentrations are normalized to total cellular protein content in each sample. Data represent median and 25th and 75th percentiles. Only participants with quantifiable levels at all measurement points are included in the figures. 50% of normal healthy volunteer (NHV) FXN level is 4.12 pg/µg from the noninterventional healthy volunteer study (N=60).

Larimar

Observed Increases in Tissue FXN Levels in OLE Are Comparable to the Phase 2 Dose Exploration Study

Absolute tissue FXN levels and increases from baseline after 25 mg nomlabofusp daily over time

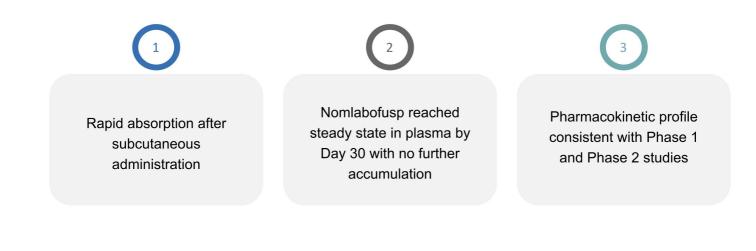

		C	Dpen Lab	el Exte	nsion	
	Buccal FXN levels (pg/µg)			Skin FXN levels (pg/µg)		
	n	Median	Mean	n	Median	Mean
Baseline	11	1.13	1.19	8	2.41	2.60
Day 30	11	2.08	3.62	8	5.34	7.45
Change from Baseline	11	0.58	2.43	8	2.42	4.85
Day 60	9	2.46	2.41			
Change from Baseline	9	0.53	1.13			
Day 90	6	1.89	2.48	5	7.65	11.73
Change from Baseline	6	1.01	1.32	5	4.89	9.28

		Phase	e 2 Dose	Explo	oration	
	Buc	Buccal FXN levels (pg/µg)		Skin FXN levels (pg/µg)		
	n	Median	Mean	n	Median	Mean
Baseline	7	1.78	1.80	7	3.70	3.38
Day 14	7	2.24	2.22	7	5.53	6.4
Change from Baseline	¹ 7	0.56	0.42	7	2.81	3.02

Skin samples not collected at Day 60 per study protocol Only participants with quantifiable levels at each measurement point are included in the tables

Tissue FXN Levels are Higher as a % of Healthy Volunteers at Day 90

Only participants with quantifiable levels at each measurement point are included in the tables Mean % of healthy volunteers is the mean of all the participants FXN levels relative to the mean FXN levels in skin cells (16.34 pg/µg) and in buccal cells (8.24 pg/µg) from the noninterventional healthy volunteer study (N=60).


Observed Trends Towards Improvement in Clinical Outcomes at Day 90 After Daily 25 mg Nomlabofusp

Visit	Statistic	mFARS 93-Point Scale	FARS-ADL 36-Point Scale	Modified Fatigue Impact Scale 84-Point Scale	9 Hole Peg Test Dominant Hand Time (Seconds)
		N = 8	N = 8	N = 8	N = 8
Baseline	Mean (SD) Median (IQR) (Min, Max)	55.81 (13.296) 53.5 (47.5, 68.3) (35.0, 73.0)	18.13 (6.064) 17.0 (12.8, 23.8) (11.0, 27.0)	27.1 (14.23) 29.5 (18, 38) (2, 45)	130.91 (99.366) 89.5 (48.7, 227.8) (38.0, 277.3)
	,	x y			
Day 90	Mean (SD) Median (IQR) (Min, Max)	55.13 (14.829) 53.3 (43.8, 66.0) (35.3, 79.5)	15.88 (6.249) 14.8 (11.0, 21.3) (8.0, 25.0)	18.5 (15.68) 17.0 (5, 32) (0, 42)	113.11 (95.586) 67.15 (48.4, 176.7) (33.50, 287.00)
Change from Baseline at	Mean (SD) Median (IQR)	-0.69 (3.983) -1.17 (-3.8, 1.2)	-2.25 (3.082) -2.25 (-3.8, 0.3)	-8.6 (12.24) -3.5 (-19, -3)	-17.79 (27.450) -9.00 (-32.0, 1.7)
Day 90	(Min, Max)	(-5.0, 7.0)	(-8.0, 1.5)	(-28, 9)	(-73.5, 9.8)

Timed 25-Foot Walk is not presented due to participants' ambulatory status

Nomlabofusp: Predictable Long-Term Pharmacokinetics

Larimar

OLE Study: Nomlabofusp 25 mg Daily is Generally Well-Tolerated for Up to 260 Days

14 participants with FA were included in the safety data

One additional participant started dosing after the data cut and one additional participant is scheduled for dosing before year-end 2024

Two participants withdrew for non-treatment related reasons

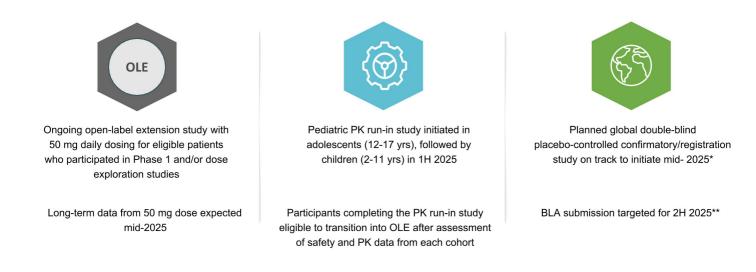
Two participants had serious adverse events that resolved within 24 hours and withdrew from the study

• Events were reviewed by Data Monitoring Committee and submitted to FDA and study is continuing as planned

Larimar Therapeutics Most common adverse events (AEs) were injection site reactions (ISRs) which were mild, brief in duration and self limited

No study discontinuations due to ISRs and all resolved

Increasing nomlabofusp dose to 50 mg in participants already enrolled and starting newly enrolled participants on 50 mg daily


Totality of Data to Date Supports that Nomlabofusp has the Potential to Slow Disease Progression

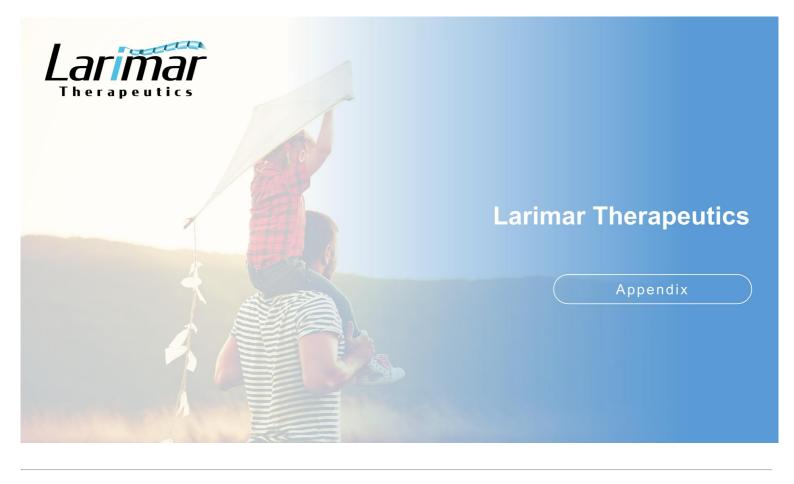
Addresses underlying deficiency	Displays functional activity	Early trend in clinical benefit
FDA alignment that FXN deficiency appears to be the pathogenic mechanism of FA	Trends in modified gene expression and lipid profile changes towards values seen in healthy controls	Trends towards improvement observed in multiple clinical outcome measures
Dose dependent increases in FXN levels that were maintained over time	Data suggest nomlabofusp may positively affect downstream metabolic pathways disrupted in FA	Potential to benefit ambulatory and non-ambulatory patients with FA

Nomlabofusp Clinical Development Program

Intend to pursue accelerated approval pathway with potential BLA submission targeted for 2H 2025 Selected by FDA to participate in its START pilot program

*Company is advancing discussions with regulators and investigators outside the U.S. to expand clinical program to international geographies **Company advancing discussions with FDA on the potential use of FXN levels to support accelerated approval.

Updates for Nomlabofusp Development Program*


OLE Study	Pediatric PK	Global Confirmatory/	BLA Submission/
	Run-In Study	Registration Study	Accelerated Approval
Six participants receiving 50 mg daily as of 12/16/24 Increasing dose in other enrolled participants All newly enrolled participants starting at 50 mg daily Long-term 50 mg data expected mid-2025	Screening ongoing in adolescents (12-17 yrs) Dosing expected to initiate in early 2025 at weight- based dose equivalent dose of adult 50 mg dose Children (2-11 yrs) to begin enrollment in 1H 2025	Identifying global sites in US, EU, UK, Australia and Canada Finalizing protocol based on advice from global regulatory agencies Initiation on track for mid- 2025	Advancing discussions with FDA on data package required for FXN as a surrogate endpoint Advancing discussions with FDA on the amount of the required safety data BLA submission targeted for 2H 2025

*Approximately \$204 Million in cash @ 9/30/24, providing projected cash runway into Q2 2026 FA: Friedreich's ataxia; OLE: Open-label extension; BLA: Biologics License Application

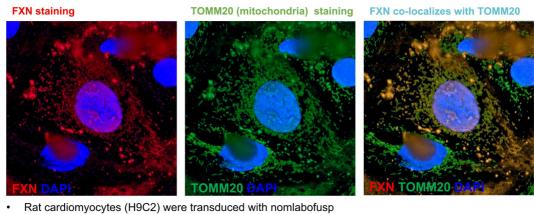
Positive Long-term OLE Data and Advancing Dose to 50 mg

OLE Supports Potential of Nomlabofusp	Nomlabofusp was generally well tolerated at doses administered up to 260 days Tissue FXN levels showed mean change from baseline of 1.32 pg/µg in buccal cells and 9.28 pg/µg in skin cells at Day 90 Daily nomlabofusp 25 mg increased and maintained tissue FXN over time, increasing from a mean of 15% of HV at baseline to 30% of HV at Day 90 in buccal cells and from 16% of HV at baseline to 72% of HV at Day 90 in skin cells Early trends towards improvements across multiple clinical outcomes at Day 90, supporting potential clinical benefit
Clinical & Regulatory Updates	Increasing dose to 50 mg in OLE study with 6 participants administered 50 mg as of 12/16/24 Screening adolescents for pediatric PK run-in study Evaluating global clinical sites for planned registration/confirmatory study Selected by FDA to participate in its START pilot program Ongoing discussions with FDA regarding use of FXN as a surrogate endpoint to support accelerated approval pathway
2025 Milestones	Q1 2025: Dose adolescents (ages 12-17 years old) in pediatric run-in study 1H 2025: Initiate PK run-in study in children (ages 2-11 years old) Mid 2025: Initiate global confirmatory/registration study Mid 2025: Data from 50 mg dose in OLE study 2H 2025: BLA submission; intend to pursue accelerated approval
	29

Nomlabofusp is a Competitively Differentiated Treatment Approach*

\$7.3B Acquisition supports the robust market potential for FA treatments

Nomlabofusp is a potential first-and-only protein replacement therapy designed to address the underlying cause of FA


Approach	Product	Company	Mechanism of Action	Clinical Status
Protein replacement	Nomlabofusp (CTI-1601)	Larimar	Frataxin Protein Replacement	Phase II
Mitochondrial Oxidative Stress Modifier	Omaveloxolone (SKYCLARYS™)	Biogen	Nrf2 Activator	Approved (US and EU)
	Vatiquinone	PTC Therapeutics	15-Lipoxygenase Inhibitor	Phase III
Gene Expression Regulator	DT-216P2 (new formulation)	Design Therapeutics	GeneTAC	Pre-clinical
Gene Therapy	LX2006	Lexeo Therapeutics	Frataxin Gene Replacement	Phase I/II

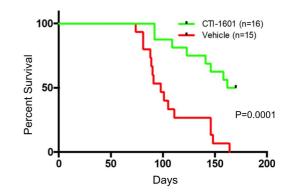
*Competitive landscape focuses on clinical-stage, industry-sponsored programs from public companies

Nomlabofusp Transduction of Cells In Vitro Leads to hFXN Located in Mitochondria

 Cells were fixed and analyzed by immunofluorescence microscopy to detect the presence of human frataxin (hFXN) and TOMM20 (a mitochondrial outer membrane protein)

Nuclei were stained with DAPI

Nomlabofusp Extends Survival in FXN-deficient KO Mice


Initial proof-of-concept for FXN replacement therapy in cardiac mouse model of FA

Median survival of MCK-Cre FXN-KO mice

- 166 days (nomlabofusp) vs. 98 days (Vehicle)
- Nomlabofusp administered 10 mg/kg SC every other day

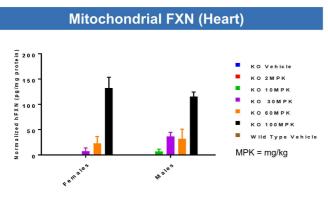
Survival beyond vehicle mean (107.5 days)

- 87.5% (nomlabofusp) vs. 33% (Vehicle)
- Demonstrates that nomlabofusp is capable of delivering sufficient amounts of FXN to mitochondria

Nomlabofusp (CTI-1601) rescues a severe disease phenotype in a well-characterized cardiac mouse model of FA

Nomlabofusp Prevents Development of Ataxic Gait in Neurologic KO Mouse Model

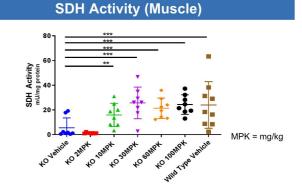
In-Vivo Efficacy Data in Pvalb-Cre FXN-KO Mouse Model


Single dose level: 10 mg/kg nomlabofusp or vehicle given intraperitoneally three times per week

- hFXN replacement with nomlabofusp prevents development of ataxic gait
- O Nomlabofusp-treated mice **survive longer** than untreated mice
- Human frataxin **present in brain, dorsal root ganglia and spinal cord** demonstrating central nervous system penetration

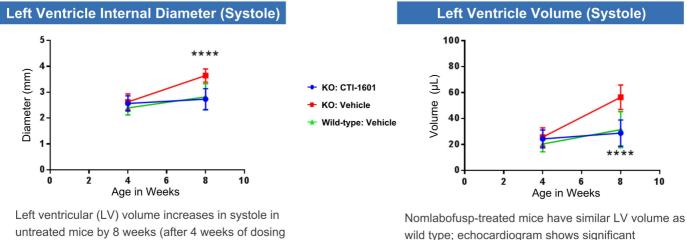
Larimar

Nomlabofusp Delivers hFXN to Mitochondria and Restores SDH Activity in KO Mice


Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at varying SQ doses of nomlabofusp every other day for two weeks at Jackson Laboratories (Bar Harbor, ME). After dosing, animals were sacrificed, and heart and skeletal muscle were evaluated for hFXN concentration in mitochondrial extracts and SDH activity was assessed.

Mitochondria hFXN concentration increases dose-dependently

Given subcutaneously, nomlabofusp functionally replaces hFXN in mitochondria of KO mice



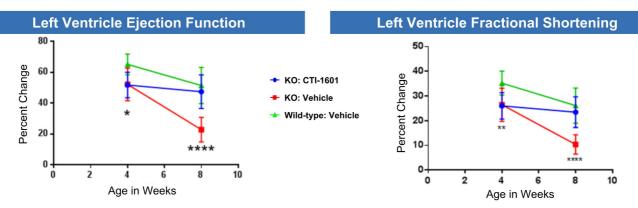
Succinate dehydrogenase (SDH) activity, which is indicative of mitochondrial function, increases in a dose-dependent manner after administration of nomlabofusp; activity plateaus at 30 mg/kg and is equivalent to activity in wild type

Nomlabofusp Prevents Left Ventricle Dilation in KO Mice

Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at 10 mg/kg every other day at Jackson Laboratories (Bar Harbor, ME). Echocardiograms were performed pre-dose and post dose.

untreated mice by 8 weeks (after 4 weeks of dosing with vehicle), but remains similar to wildtype when treated with nomlabofusp (10 mg/kg every other day)

Larimar Therapeutics


37

differences between vehicle and nomlabofusp treated

(10 mg/kg every other day) KO mice

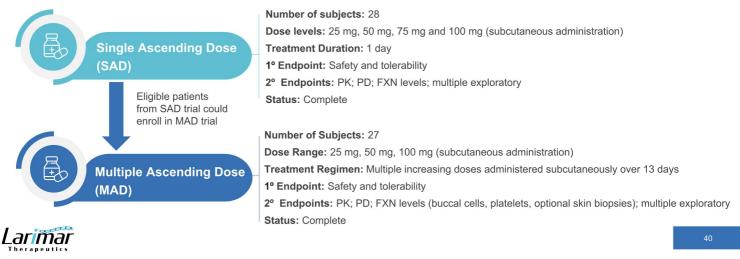
Nomlabofusp Preserves Left Ventricle Function in KO Mice

Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at 10 mg/kg every other day at Jackson Laboratories (Bar Harbor, ME). Echocardiograms were performed pre-dose and post dose.

Left ventricular (LV) function drops significantly in vehicle treated mice by Week 8

Nomlabofusp-treated (10 mg/kg every other day) mice have similar LV function as wildtype; echocardiogram shows significant differences between vehicle and nomlabofusp treated KO mice

Larimar

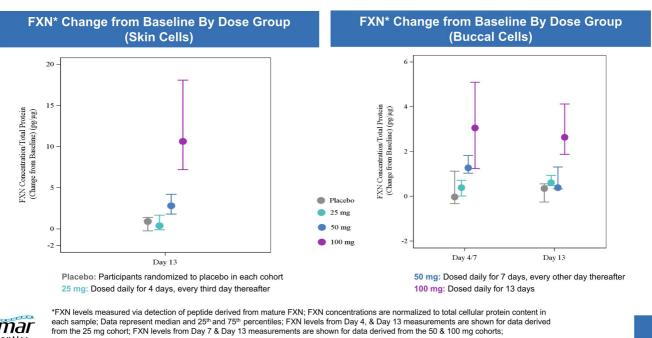


CTI-1601: Phase 1 Clinical Program in Patients with FA

Program consisted of double-blind, placebo controlled single- and multiple-ascending dose trials

Phase 1 Development Plan

- Two double-blind, placebo-controlled dosing trials in patients with FA
- Patient dosing began December 2019
- · Safety Review Committee assessed all blinded data between each cohort to ensure patient safety



Completed Phase 1 Multiple Ascending Dose Study

	Treatment Sche	edules for Eac	h Cohort- nomlabofusp (C1	[I-1601) or pla	cebo	
	Cohort 1 (25 mg; n = 8)		Cohort 2 (50 mg; n = 9)	Cohort 3 (100 mg n = 10)		
1	3-day Treatment Period	1	3-day Treatment Period	13-day Treatment Period		
1 2 3 4	5 6 7 8 9 10 11 12 13 14	1 2 3 4	5 6 7 8 9 10 11 12 13 14	1 2 3 4 5 6 7 8 9 10 11 12 13 14		
	stration of nomlabofusp or placebo ninistration		stration of nomlabofusp or placebo ninistration	 Administration of nomlabofusp or placebolic No Administration 		
	FXN	Level Sampliı	ng Days Presented for Each	Cohort		
	Cohort 1 Sampling Days	c	Cohort 2 Sampling Days	Cohort 3 Sampling Days		
Buccal Cells	Baseline, Day 4, Day 13	Buccal Cells	Baseline, Day 7, Day 13	Buccal Cells	Baseline, Day 7, Day 13	
Skin	Baseline, Day 13	Skin	Baseline, Day 13	Skin	Baseline, Day 13	

Dose Dependent Increases in FXN Levels Observed in Skin and Buccal Cells in Phase 1

Larimar

MAD Trial Patient Demographics

Parameter	Statistic	All placebo (n=7)	25 mg CTI-1601 (n=6)	50 mg CTI-1601 (n=7)	100 mg CTI-1601 (n=7)	All CTI-1601 (n=20)	Overall (n=27)
Sex							
Male	n (%)	5 (71.4)	3 (50.0)	4 (57.1)	3 (42.9)	10 (50.0)	15 (55.6)
Female	n (%)	2 (28.6)	3 (50.0)	3 (42.9)	4 (57.1)	10 (50.0)	12 (44.4)
Age (years)							
	Mean	25.7	39.7	34.7	28.0	33.9	31.7
	SD	6.37	16.59	9.03	8.96	12.13	11.40
	Median	23	37	36	24	34	28
	Min, Max	20,36	21,65	19,47	20,44	19,65	19,65
Race							
White	n (%)	6 (85.7)	6 (100.0)	6 (85.7)	6 (85.7)	18 (90.0)	24 (88.9)
Asian	n (%)	0	0	1 (14.3)	1 (14.3)	2 (10.0)	2 (7.4)
American Indian	n (%)	1 (14.3)	0	0	0	0	1 (3.7)
Ethnicity							
Hispanic/Latino	n (%)	2 (28.6)	0	0	0	0	2 (7.4)
Not Hispanic/Latino	n (%)	5 (71.4)	6 (100.0)	7 (100.0)	7 (100.0)	20 (100.0)	25 (92.6)

SD: Standard deviation

MAD Trial Patient Disease Characteristics

Parameter	Statistic	All placebo (n=7)	25 mg CTI-1601 (n=6)	50 mg CTI-1601 (n=7)	100 mg CTI-1601 (n=7)	All CTI-1601 (n=20)	Overall (n=27)
Age at Symptom Onset	:						
	Mean	14.1	24.0	19.3	11.9	18.1	17.1
	SD	5.34	14.48	6.21	6.72	10.37	9.39
	Median	15.0	18.0	19.0	10.0	18.0	16.0
	Min, Max	8,23	12,44	8,28	5,22	5,44	5,44
Age at Diagnosis							
	Mean	18.3	31.5	26.4	15.9	24.3	22.7
	SD	7.87	19.88	4.28	8.21	13.24	12.23
	Median	20.0	25.5	28.0	13.0	27.0	21.0
	Min, Max	9,32	14,64	17,30	5,27	5,64	5,64
Assistive Device							
Walker	n (%)	0	2 (33.3)	3 (42.9)	0	5 (25.0)	5 (18.5)
Wheelchair	n (%)	4 (57.1)	3 (50.0)	1 (14.3)	6 (85.7)	10 (50.0)	14 (51.9)
Other	n (%)	1 (14.3)	0	1(14.3)	0	1 (5.0)	2 (7.4)
None	n (%)	2 (28.6)	1 (16.7)	2 (28.6)	1 (14.3)	4 (20.0)	6 (22.2)

SD: Standard deviation

PK analyses support evaluating once-daily and every-other-day dosing regimens for CTI-1601

Summary of MAD Trial PK Analyses

- \bigcirc CTI-1601 was quickly absorbed after subcutaneous administration
- ⊘ Dose-proportional increases in exposure observed with increasing doses of CTI-1601
- Mean half life of CTI-1601 in plasma was approximately 11 hours
- CTI-1601 appeared to be at or close to steady state exposure after 13 days of dosing 100 mg once daily

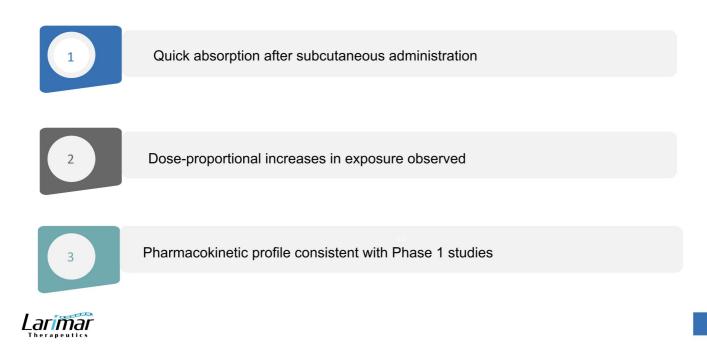
Absolute Increases in Skin FXN Levels

Dose response in tissue FXN concentrations and increases from baseline after dosing

	Day 14 Skin FXN Levels			Day 28 Skin FXN Levels				
Deer	N/:-:4	Absolute Values (pg/µg)		Deer	N/1-14	Absolute Values (pg/µg)		
Dose	Visit	Median	Mean	Dose	Visit	Median	Mean	
	Baseline	3.70	3.38		Baseline	3.70	3.38	
25 mg	Day 14	5.53	6.40	25 mg	Day 28	4.39	4.80	
20 mg	Change from Baseline	2.81	3.02	23 mg	Change from Baseline	2.28	1.41	
	Baseline	2.12	2.08		Baseline	2.12	2.08	
50 mg	Day 14	7.40	7.32	50 mg	Day 28	5.23	5.24	
Joing	Change from Baseline	5.57	5.24		Change from Baseline	3.14	3.17	

Only participants with quantifiable levels at baseline and day 14 and day 28 are included in the tables.

Absolute Increases in Buccal FXN Levels


Dose response in tissue FXN concentrations and increases from baseline after dosing

	Day 14 Buccal FXN Levels			Day 28 Buccal FXN Levels				
Deer	N/1-14	Absolute Values (pg/µg)		Deer	11:	Absolute Values (pg/µg)		
Dose	Visit	Median	Mean	Dose	Visit	Median	Mean	
	Baseline	1.78	1.80		Baseline	1.70	1.65	
25 mg	Day 14	2.24	2.22	25 mg	Day 28	1.73	1.76	
20 mg	Change from Baseline	0.56	0.42	20 mg	Change from Baseline	0.03	0.11	
	Baseline	1.61	1.69		Baseline	1.76	1.77	
50 mg	Day 14	2.44	2.38	50 mg	Day 28	2.15	2.15	
- oo nig	Change from Baseline	0.72	0.69	- oo mg	Change from Baseline	0.48	0.38	

Only participants with quantifiable levels at baseline and day 14 and day 28 are included in the tables.

Nomlabofusp: Predictable Pharmacokinetics

Additional Phase 1 and 2 Data Presented at the International Congress for Ataxia Research, November 2024

Nomlabofusp Clinical Studies Included a Broad, Representative Population of Adults with FA

Broad population of adults with FA included in Phase 1 and 2 Studies

Age of onset between 5 - 60 years with a median age of onset of 15 yrs

81% of participants had FXN levels at baseline less than 30% of healthy controls and 37% of participants had less than 20%

Over 50% of participants were nonambulatory at baseline

*18 subjects participated in more than 1 study

**Quantifiable buccal cell FXN levels relative to the median of healthy controls

***Ambulatory status is based on the gait score (E7=5 vs. <5) of the upright stability subscore of the mFARS

Larimar ****Data presented at the International Congress for Ataxia Research, November 2024

Demographics and Baseline Disease Characteristics from Nomlabofusp Phase 1 and 2 Interventional Studies****

	N*	Median	Mean	Min	Max
Age	61	28.0	31.9	19	69
Age of Onset	61	15.0	15.9	5	60
Age of Diagnosis	61	19.0	21.0	5	64
Shorter GAA (GAA ₁)	60	550.0	555.8	99	1000
Longer GAA (GAA ₂)	60	900.0	890.2	265	1300
Frataxin, % of Control**	57	24.4	23.9	8.7	61.9
mFARS Score	61	52.0	49.5	13.2	74.5
Upright Stability Score	61	32.0	26.9	7.0	35.0
Dominant hand 9-hole peg test	61	71.0	84.8	26.0	229.2
T25-FW Test Score	51	9.9	13.4	4.3	48.5
Left Ventricular Mass (g)	61	163.4	168.0	73.7	398.8
LVEF %	61	63.0	63.5	52	76
Ambulatory Status***					
No	36				
Yes	25				

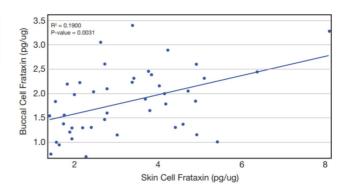
Pooled Data from Completed Phase 1 & 2 Studies Confirms Disease & FXN Relationships are Consistent with Literature

Disease Characteristics by Quartiles Based on Buccal Cell FXN Levels at Baseline

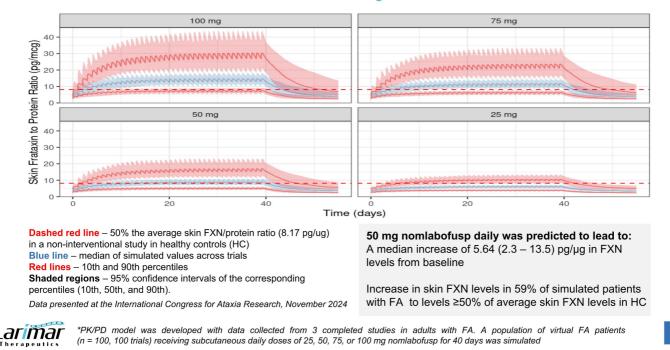
FXN Age at Age at Quartile Concentration* Symptom Diagnosis GAA₁** GAA₂** (pg/mcg) Onset** Q1 (N=14) 899.5 < 1.31 10.5 14.5 616.5 Q2 (N=14) 1.31 - <1.95 13.5 23.0 486.0 866.0 Q3 (N=14) 1.95 - <2.30 16.0 19.0 555.0 871.5 Q4 (N=15) ≥ 2.30 19.0 27.0 400.0 933.0

*Quantifiable buccal cell frataxin levels

**Median values

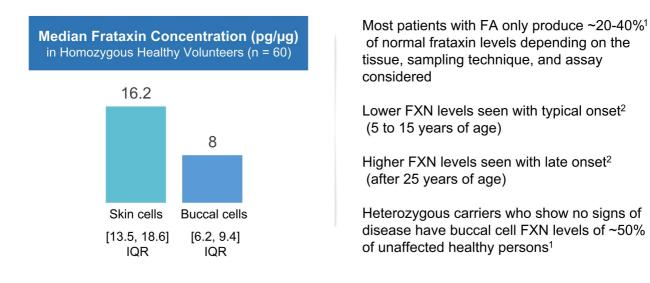

Median buccal cell FXN concentration in healthy controls = 8.1 ng/mcg

Buccal cell FXN levels correlated with age of onset and inversely correlated with the number of GAA repeats and rate of disease progression


Data presented at the International Congress for Ataxia Research, November 2024

Baseline Buccal and Skin Cell FXN Levels

Buccal cell FXN levels correlated with skin cell FXN levels


Modeling/Simulation Predicts^{*} 50mg Daily Can Achieve Skin FXN Levels ≥50% of Healthy Controls in Most Patients

CLIN-1601-002: Top-line Non-interventional Study Results

Non-interventional study measured FXN in homozygous healthy volunteers

Larimar

FXN concentrations were measured in skin and buccal cells from 60 homozygous healthy volunteers utilizing the same sampling technique and assay as clinical trials of nomlabofusp; FXN levels measured via detection of peptide derived from mature FXN; FXN concentrations normalized to total cellular protein content in each sample. 1. E.C. Deutsch et al. Molecular Genetics and Metabolism 101 (2010) 238–245. 2. Friedreich's Ataxia Research Alliance

Nomlabofusp Selected by FDA for START Pilot Program

Highlights FDA commitment to augment formal meetings with more rapid, ad-hoc communications to accelerate program development of rare diseases

START Pilot Program Support for Clinical Trials Advancing Rare Disease Therapeutics	CDER Selection Based On
A new milestone-driven program launched by the FDA in September 2023 Designed to accelerate development of novel therapies intended to address unmet medical needs in rare diseases	Demonstrated development program readiness (e.g., sponsors who demonstrate the ability to move the program towards a marketing application) Potential to address serious and unmet medical need in a rare neurodegenerative condition
 7 novel drugs selected 3 products by CDER (nomlabofusp) for rare neurodegenerative conditions 4 products by CBER for cell and gene therapy 	Alignment of CMC development timelines with clinical development plans Proposed plan where enhanced communication can improve efficiency of product development

FDA: Food and Drug Administration; CDER: Center for Drug Evaluation and Research; CBER: Center for Biologics Evaluation and Research; CMC: Chemistry, Manufacturing, and Controls

Strong Relationship with FARA – Joined FARA's TRACK-FA Neuroimaging Consortium as an Industry Partner

TRACK-FA collects natural history data to establish disease specific neuroimaging biomarkers for potential use in clinical trials. Larimar will have access to all study data for use in regulatory filings, as appropriate

FARA provides industry with several key items

- Assistance with patient recruitment and education
- Access to Global Patient Registry with demographic and clinical information on more than 1,000 FA patients
- Sponsored a Patient-Focused Drug Development Meeting in 2017 resulting in a publication titled "The Voice of the Patient"

National, non-profit organization dedicated to the pursuit of scientific research leading to treatments and a cure for FA