UNITED STATES SECURITIES AND EXCHANGE COMMISSION

WASHINGTON, D.C. 20549

FORM 8-K

CURRENT REPORT

Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): March 11, 2024

Larimar Therapeutics, Inc.

(Exact name of Registrant as Specified in Its Charter)

Delaware (State or Other Jurisdiction of Incorporation) 001-36510 (Commission File Number) 20-3857670 (IRS Employer Identification No.)

Three Bala Plaza East Bala Cynwyd, Pennsylvania (Address of Principal Executive Offices)

19004 (Zip Code)

Registrant's Telephone Number, Including Area Code: (844) 511-9056

(Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

□ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

□ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

□ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

D Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

	Trading	
Title of each class	Symbol(s)	Name of each exchange on which registered
Common Stock, par value \$0.001 per share	LRMR	Nasdaq Global Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§ 230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§ 240.12b-2 of this chapter).

Emerging growth company \Box

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 8.01 Other Events.

Press Release

On March 11, 2024, Larimar Therapeutics, Inc. (the "*Company*") issued a press release announcing the dosing of the first patient in its open label extension study evaluating 25 mg daily subcutaneous injections of nomlabofusp (CTI-1601) in participants with Friedreich's ataxia. A copy of the press release is attached as Exhibit 99.1 to this Current Report on Form 8-K and is incorporated herein by reference.

Investor Presentations

On March 11, 2024, the Company posted on its website two slide presentations, which are attached as Exhibit 99.2 and 99.3 to this Current Report on Form 8-K and are incorporated herein by reference. Representatives of the Company will use these presentations in various meetings with investors, analysts and other parties from time to time.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits

Below is a list of exhibits included with this Current Report on Form 8-K.

Exhibit No.	Document
99.1	Press Release issued by Larimar Therapeutics, Inc. on March 11, 2024*
99.2	Larimar Therapeutics, Inc. Corporate Presentation*
99.3	Larimar Therapeutics, Inc. Investor Presentation*
104	Cover Page Interactive Data File (embedded within the Inline XBRL document)

Filed herewith

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Larimar Therapeutics, Inc.

Date: March 11, 2024

By: /s/ Carole S. Ben-Maimon, M.D.

Name: Carole S. Ben-Maimon, M.D. Title: President and Chief Executive Officer

Larimar Therapeutics Announces the Dosing of the First Patient in Long-term Open Label Extension Study for Nomlabofusp in Patients with Friedreich's Ataxia

- Study will inform on long-term safety profile and tissue frataxin levels
- OLE initiated with 25 mg daily subcutaneous injections of nomlabofusp
- Frataxin data and safety data from the OLE study are intended to help support a potential Biologics License Application ("BLA") submission for accelerated approval targeted for H2 2025
- Initial data expected in Q4 2024

Bala Cynwyd, PA, March 11, 2024 – Larimar Therapeutics, Inc. ("Larimar") (Nasdaq: LRMR), a clinical-stage biotechnology company focused on developing treatments for complex rare diseases, today announced dosing of the first patient in an open label extension (OLE) study evaluating 25 mg daily subcutaneous injections of nomlabofusp in participants with Friedreich's ataxia (FA). Nomlabofusp (CTI-1601) is a novel protein replacement therapy designed to address the root cause of Friedreich's ataxia (FA) by delivering frataxin to mitochondria.

"We are pleased to dose the first patient in our OLE study, further advancing the nomlabofusp clinical program and building on the successful completion of our Phase 2 dose escalation study. Importantly, the OLE study will inform on the long-term safety profile and tissue frataxin levels and provide a first look at real-life experience with self-administration by patients or administration by a caregiver. Participants who completed treatment in the recent Phase 2 dose exploration trial, or who previously completed a prior Phase 1 clinical trial of nomlabofusp are potentially eligible to screen for the OLE. Based on our Phase 1 and Phase 2 findings, we expect to continue daily dosing throughout the study," said Carole Ben-Maimon, MD, President, and Chief Executive Officer of Larimar. "In February we announced that we intend to pursue frataxin as a potential novel surrogate endpoint to support accelerated approval. The frataxin data, supportive pharmacodynamics and clinical outcomes information and safety data from the OLE study, along with additional nonclinical pharmacology information will be used to help support a potential BLA submission for accelerated approval targeted for the second half of 2025. We look forward to reporting initial data from the OLE study in the fourth quarter of 2024."

Larimar's Phase 2 OLE study will initially evaluate daily subcutaneous injections of 25 mg of nomlabofusp self-administered or administered by a caregiver. Key study objectives of the OLE study include safety and tolerability, pharmacokinetics, and tissue frataxin levels in peripheral tissues as well as other exploratory pharmacodynamic markers (lipid profiles and gene expression data) following long-term subcutaneous administration of nomlabofusp. Clinical measures collected during the trial will be compared to data from a synthetic control arm derived from participants in the Friedreich's Ataxia Clinical Outcome Measures Study (FACOMS) database. To escalate the dose in the OLE study, data from the 50 mg cohort of the Phase 2 dose exploration study, as well as available data from the 25 mg dose in the OLE study, will be submitted for FDA review due to the continued partial clinical hold. Initial data from the OLE study is expected in Q4 2024.

About Nomlabofusp (CTI-1601)

Nomlabofusp is a recombinant fusion protein intended to deliver human frataxin to the mitochondria of patients with Friedreich's ataxia who are unable to produce enough of this essential protein. Nomlabofusp has been granted Rare Pediatric Disease designation, Fast Track designation and Orphan Drug designation by the U.S. Food and Drug Administration (FDA), Orphan Drug Designation by the European Commission, and a PRIME designation by the European Medicines Agency.

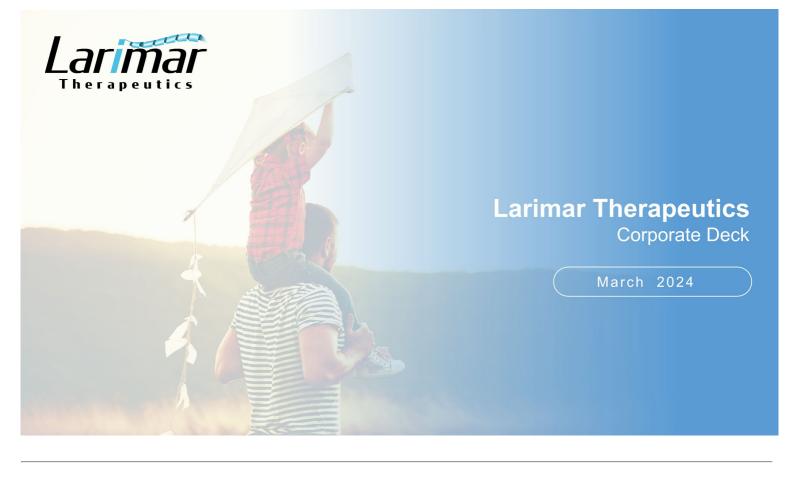
About Larimar Therapeutics

Larimar Therapeutics, Inc. (Nasdaq: LRMR), is a clinical-stage biotechnology company focused on developing treatments for complex rare diseases. Larimar's lead compound, nomlabofusp (CTI-1601), is being developed as a potential treatment for Friedreich's ataxia. Larimar also plans to use its intracellular

delivery platform to design other fusion proteins to target additional rare diseases characterized by deficiencies in intracellular bioactive compounds. For more information, please visit: https://larimartx.com.

Forward-Looking Statements

This press release contains forward-looking statements that are based on Larimar's management's beliefs and assumptions and on information currently available to management. All statements contained in this release other than statements of historical fact are forward-looking statements, including but not limited to statements regarding Larimar's ability to develop and commercialize nomlabofusp (also known as CTI-1601) and other planned product candidates, Larimar's planned research and development efforts, including the timing of its nomlabofusp clinical trials, interactions with the FDA and overall development plan and other matters regarding Larimar's business strategies, ability to raise capital, use of capital, results of operations and financial position, and plans and objectives for future operations.


In some cases, you can identify forward-looking statements by the words "may," "will," "could," "would," "should," "expect," "intend," "plan," "anticipate," "believe," "estimate," "predict," "project," "potential," continue," "ongoing" or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. These statements involve risks, uncertainties and other factors that may cause actual results, performance, or achievements to be materially different from the information expressed or implied by these forward-looking statements. These risks, uncertainties and other factors include, among others, the success, cost and timing of Larimar's product development activities, nonclinical studies and clinical trials, including nomlabofusp clinical milestones and continued interactions with the FDA; that preliminary clinical trial results may differ from final clinical trial results, that earlier non-clinical and clinical data and testing of nomlabofusp may not be predictive of the results or success of later clinical trials, and assessments; that the FDA may not ultimately agree with Larimar's nomlabofusp development strategy; the potential impact of public health crises on Larimar's future clinical trials, manufacturing, regulatory, nonclinical study timelines and operations, and general economic conditions; Larimar's ability and the ability of third-party manufacturers Larimar engages, to optimize and scale nomlabofusp's manufacturing process; Larimar's ability to obtain regulatory approvals for nomlabofusp and future product candidates; Larimar's ability to develop sales and marketing capabilities, whether alone or with potential future collaborators, and to successfully commercialize any approved product candidates; Larimar's ability to raise the necessary capital to conduct its product development activities; and other risks described in the filings made by Larimar with the Securities and Exchange Commission (SEC), including but not limited to Larimar's periodic reports, including the annual report on Form 10-K, quarterly reports on Form 10-Q and current reports on Form 8-K, filed with or furnished to the SEC and available at www.sec.gov. These forward-looking statements are based on a combination of facts and factors currently known by Larimar and its projections of the future, about which it cannot be certain. As a result, the forwardlooking statements may not prove to be accurate. The forward-looking statements in this press release represent Larimar's management's views only as of the date hereof. Larimar undertakes no obligation to update any forward-looking statements for any reason, except as required by law.

Investor Contact:

Joyce Allaire LifeSci Advisors jallaire@lifesciadvisors.com (212) 915-2569

Company Contact:

Michael Celano Chief Financial Officer mcelano@larimartx.com (484) 414-2715

Forward-Looking Statements

This presentation contains forward-looking statements that are based on the beliefs and assumptions of Larimar Therapeutics, Inc. ("Company") and on information currently available to management. All statements contained in this presentation other than statements of historical fact are forward-looking statements, including but not limited to Larimar's ability to develop and commercialize nomlabofusp (CTI-1601) and other planned product candidates, Larimar's planned research and development efforts, including the timing of its nomlabofusp clinical trials and overall development plan and other matters regarding Larimar's business strategies, ability to raise capital, use of capital, results of operations and financial position, and plans and objectives for future operations.

In some cases, you can identify forward-looking statements by the words "may," "will," "could," "should," "expect," "intend," "plan," "anticipate," "believe," "estimate," "predict," "project," "potential," "continue," "ongoing" or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. These statements involve risks, uncertainties and other factors that may cause actual results, performance, or achievements to be materially different from the information expressed or implied by these forward-looking statements. These risks, uncertainties and other factors include, among others, the success, cost and timing of Larimar's product development activities, nonclinical studies and clinical trials, including nomlabofusp clinical milestones and continued interactions with the FDA; that preliminary clinical trial results may differ from final clinical trial results, that earlier non-clinical and clinical data and testing of nomlabofusp may not be predictive of the results or success of later clinical trials, and assessments; that the FDA may not ultimately agree with Larimar's nomlabofusp development strategy; the potential impact of public health crises on Larimar's future clinical trials, manufacturing, regulatory, nonclinical study timelines and operations, and general economic conditions; Larimar's ability and the ability of third-party manufacturers Larimar engages, to optimize and scale nomlabofusp's manufacturing process; Larimar's ability to obtain regulatory approvals for nomlabofusp and future product candidates; Larimar's ability to develop sales and marketing capabilities, whether alone or with potential future collaborators, and to successfully commercialize any approved product candidates; Larimar's ability to raise the necessary capital to conduct its product development activities; and other risks described in the filings made by Larimar with the Securities and Exchange Commission (SEC), including but not limited to Larimar's periodic reports, including the annual report on Form 10-K, quarterly reports on Form 10-Q and current reports on Form 8-K, filed with or furnished to the SEC and available at www.sec.gov. These forward-looking statements are based on a combination of facts and factors currently known by Larimar and its projections of the future, about which it cannot be certain. As a result, the forward-looking statements may not prove to be accurate. The forward-looking statements in this presentation represent Larimar's management's views only as of the date hereof. Larimar undertakes no obligation to update any forward-looking statements for any reason, except as required by law.

Positive Topline Phase 2 Data for Nomlabofusp (CTI-1601)

Successful completion of 4-week, placebo-controlled dose exploration study (25 mg and 50 mg) in FA

Dose-dependent increases in tissue frataxin (FXN) levels in skin and buccal cells

Participants treated with 50 mg daily for 14 days and then every other day for an additional 14 days until day 28

Nomlabofusp was generally well-tolerated following repeated subcutaneous injections up to 28 days

- Baseline FXN levels in skin cells < 17% of average FXN levels of healthy volunteers
- After 14 days of daily dosing, FXN levels in skin cells increased to 33% to 59% of average FXN level of healthy volunteers
- After switching to every other day dosing on day 15, continued to observe dose dependent increases in FXN levels with reduced magnitude

All treated patients in the 50 mg dose group had at least a 100% increase over baseline in FXN levels in skin cells at day 14

Across all studies to date, higher variability in FXN levels was observed in buccal vs. skin cells

FA: Friedreich's ataxia; OLE: Open-label extension; BLA: Biologics License Application

OLE trial initiated for 25 mg daily dosing

High patient interest in study participation First patient dosed in March 2024 Initial data expected Q4 2024

Intend to Pursue Accelerated Approval with FDA

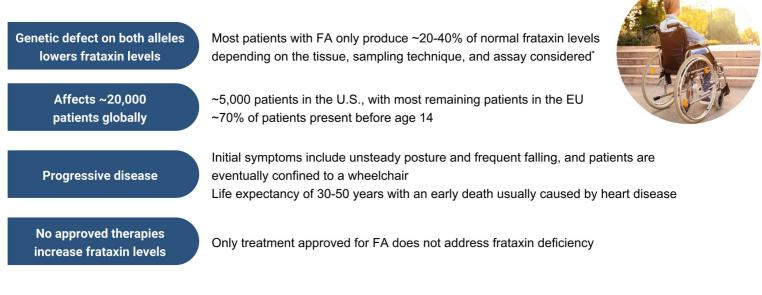
Discussions initiated on FXN as surrogate endpoint Potential **BLA submission targeted for 2H 2025**

Clinical-Stage Novel Protein Replacement Therapy Platform

Potential first therapy to increase frataxin levels	Lead candidate nomlabofusp (CTI-1601) is a recombinant fusion protein designed to directly address frataxin deficiency in patients with Friedreich's ataxia (FA) by delivering the protein to mitochondria. Granted Orphan Drug (US & EU), Rare Pediatric Disease (US), Fast Track (US), & PRIME (EU) designations
Consistent Phase 1 and Phase 2 findings	Nomlabofusp was generally well tolerated and demonstrated dose-dependent increases in frataxin (FXN) levels from baseline in skin and buccal cells in a 4-week placebo-controlled Phase 2 study and a multiple ascending dose Phase 1 study
Intend to pursue accelerated approval with FDA	FDA acknowledgement that FXN deficiency appears to be critical to the pathogenic mechanism of FA, and that there continues to be an unmet need for treatments that address the underlying disease pathophysiology. Discussions to support an accelerated approval are ongoing. BLA submission targeted for 2H 2025
OLE study with near-term catalysts	Dosed first patient in OLE study with 25 mg daily dosing in Q1 2024 with interim data expected in Q4 2024 To potentially escalate dose in the OLE study, data from the 50 mg cohort of the Phase 2 study and available data from the OLE study will be submitted for FDA review due to continued partial clinical hold
Strong financial foundation	Cash \$86.8 million estimated* at 12/31/23 plus \$161 million net proceeds from February 2024 public offering provides projected cash runway into 2026
	dited and preliminary and actual results may differ due to the completion of our fiscal 2023 closing procedures. As such, this estimate as a substitute for our full audited financial statements prepared in accordance with U.S. generally accepted accounting principles.

Larimar Technology is Supported by a Strong IP Portfolio

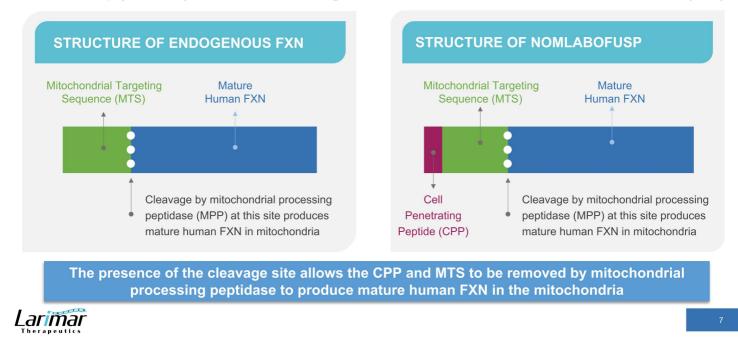
Granted nomlabofusp (CTI-1601) composition of matter patent extends into 2040


- US and foreign pending applications cover key biomarkers, analytical tools and methods of treatment for additional disease indications for nomlabofusp
- Nomlabofusp should be eligible for **12 years of market exclusivity** upon approval in the US (independent of patents) and at least **10 years of market** exclusivity upon approval in EU (independent of patents)

Granted

Pending

Friedreich's Ataxia (FA): A rare and progressive disease



* E.C. Deutsch et al. Molecular Genetics and Metabolism 101 (2010) 238–245.

Nomlabofusp is Designed to Deliver Additional Frataxin

Nomlabofusp (CTI-1601) maintains the cleavage site between the MTS and mature human frataxin (FXN)

FXN Levels Predict Disease Progression in FA

Lower FXN levels are associated with earlier onset of disease, faster rate of disease progression, and shorter time to loss of ambulation

Median Age of Onset and Rate of Disease Progression in Relation to FXN Levels

FXN Level* (% of Normal Level)	Age of Onset (Years)	FARS ** (Change/Year)
11.2	7	2.9
22.0	11	2.1
31.0	16	2.0
48.7	19	1.6

Adapted from H.L.Plasterer et al. PLoS ONE 2013 8(5):e63958

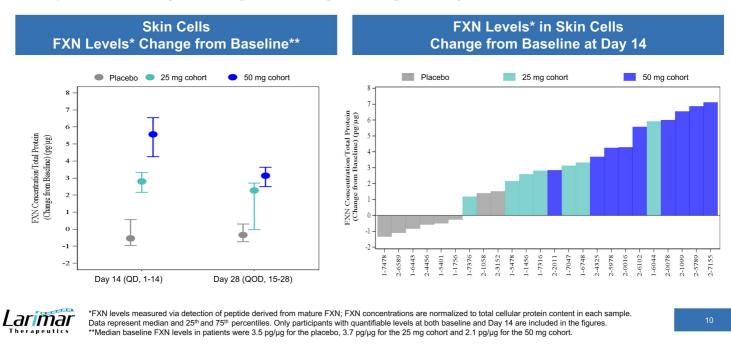
Median Age of Onset Predicts Time to Loss of Ambulation

Age of Onset (Years)	Median Time to Loss of Ambulation (Years)
< 15	11.5
15 to 24	18.3
> 24	23.5

Adapted from C. Rummey et al. EClinicalMedicine. 2020 18:100213

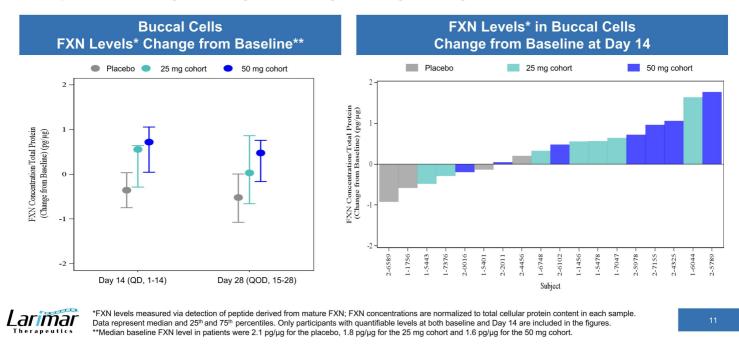
*FXN levels measured in peripheral blood mononuclear cells (PBMCs). FXN levels as measured by % of normal demonstrated to be equivalent in PBMCs, buccal cells, and whole blood. **FARS: Friedreich's ataxia rating score, measures disease progression with a higher score indicating a greater level of disability.

8


Phase 2 Dose Exploration Study for 25 and 50 mg Cohorts

Goal: Further characterize PK/PD and assess safety to inform long-term dose and dose regimen

	Treatment Schedule - nomlabofusp (CTI-1601) or placebo
	28-day Treatment Period
1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
_	taneous administration of nomlabofusp (CTI-1601) or placebo
= No Adı	ninistration
	Study Details
Population	Ambulatory and non-ambulatory Friedreich's ataxia patients ≥18 years of age Nomlabofusp (CTI-1601) treatment naïve or participated (if eligible) in a previous Larimar study
Dose	Cohort 1: 25 mg Cohort 2: 50 mg
Key Endpoints	Frataxin levels in peripheral tissue, PK, safety and tolerability; other exploratory endpoints include lipids and gene expression levels
Number of Patients	Cohort 1: Enrolled 13 participants (9 on nomlabofusp; 4 on placebo) Cohort 2: Enrolled 15 participants (10 on nomlabofusp; 5 on placebo)
	9


Dose-Dependent Increase in FXN Levels in Skin Cells

Participants dosed daily for 14 days, then every other day until day 28

Dose-Dependent Increase in FXN Levels in Buccal Cells

Participants dosed daily for 14 days, then every other day until day 28

Absolute Increases in Skin FXN Levels

Dose response in tissue FXN concentrations and increases from baseline after dosing

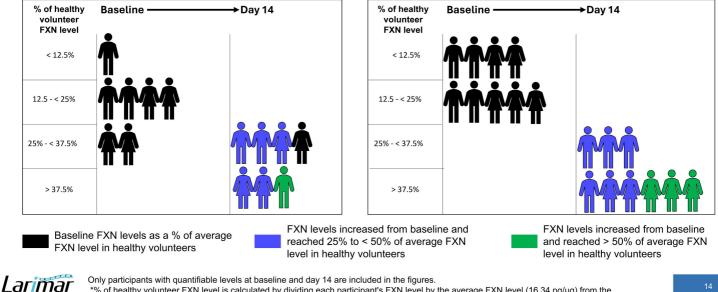
	Day 14 Skin FXN Levels		Day 28 Skin FXN Levels				
	Absolute Values (pg/µg)		Dees	N <i>U</i>	Absolute Values (pg/µg)		
Dose	Visit	Median	Mean	Dose	Visit -	Median	Mean
	Baseline	3.70	3.38		Baseline	3.70	3.38
25 mg	Day 14	5.53	6.40	25 mg	Day 28	4.39	4.80
20 mg	Change from Baseline	2.81	3.02	20 mg	Change from Baseline	2.28	1.41
	Baseline	2.12	2.08		Baseline	2.12	2.08
50 mg	Day 14	7.40	7.32	50 mg	Day 28	5.23	5.24
- oo nig	Change from Baseline	5.57	5.24	- oo mg	Change from Baseline	3.14	3.17

Only participants with quantifiable levels at baseline and day 14 and day 28 are included in the tables.

Absolute Increases in Buccal FXN Levels

Dose response in tissue FXN concentrations and increases from baseline after dosing

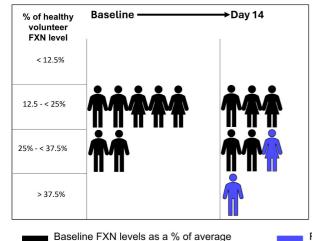
	Day 14 Buccal FXN Levels		Day 28 Buccal FXN Levels				
Dose Visit	Absolute Values (pg/µg)		Deer	N/ 11	Absolute Values (pg/µg)		
	VISIT	Median	Mean	Dose	Visit	Median	Mean
	Baseline	1.78	1.80		Baseline	1.70	1.65
25 mg	Day 14	2.24	2.22	25 mg	Day 28	1.73	1.76
20 mg	Change from Baseline	0.56	0.42	20 mg	Change from Baseline	0.03	0.11
	Baseline	1.61	1.69		Baseline	1.76	1.77
50 mg	Day 14	2.44	2.38	50 mg	Day 28	2.15	2.15
- oo nig	Change from Baseline	0.72	0.69	- oo mg	Change from Baseline	0.48	0.38



Only participants with quantifiable levels at baseline and day 14 and day 28 are included in the tables.

Skin Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

50 mg of Nomlabofusp


25 mg of Nomlabofusp

*% of healthy volunteer FXN level is calculated by dividing each participant's FXN level by the average FXN level (16.34 pg/µg) from the noninterventional healthy volunteer study (N=60).

Buccal Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

25 mg of Nomlabofusp

FXN level in healthy volunteers

50 mg of Nomlabofusp

FXN levels increased from baseline and reached 25% to < 50% of average FXN level in healthy volunteers

Only participants with quantifiable levels at baseline and day 14 are included in the figures. *% of healthy volunteer FXN level is calculated by dividing each participant's FXN level by the average FXN level (8.24 pg/µg) from Larimar's noninterventional healthy volunteer study (N=60).

Increasing FXN Levels May Slow Disease Progression

Disease Characteristics* Based on Literature**	Nomlabofusp Administration in Phase 2 Study
 Patients with FXN levels 11% of average healthy volunteers Median age of onset at 7 years Deteriorate by 2.9 points/year as measured by FARS Lose ambulation at a median of 11.5 years 	 25 mg daily for 14 days shifted FXN levels in All but one patient to > 25% of average healthy volunteers in skin cells with a median value of 33.9%
 Patients with FXN levels > 30% of average healthy volunteers Median age of onset at 16 years Deteriorate by 2.0 points/year as measured by FARS Lose ambulation at a median of 18.3 years 	 50 mg daily for 14 days shifted FXN levels in All patients from < 25% of average healthy volunteers to 33% to 59% (3 patients > 50%) in skin cells with a median value of 45%

H.L.Plasterer et al. PLoS ONE 2013 8(5):e63958; C. Rummey et al. EClinicalMedicine. 2020 18:100213

Larimar

*FARS: Friedreich's ataxia rating scale, measures disease progression with a higher score indicating a greater level of disability. **FXN levels measured in peripheral blood mononuclear cells (PBMCs). FXN levels as measured by % of normal demonstrated to be equivalent in PBMCs, buccal cells, and whole blood.

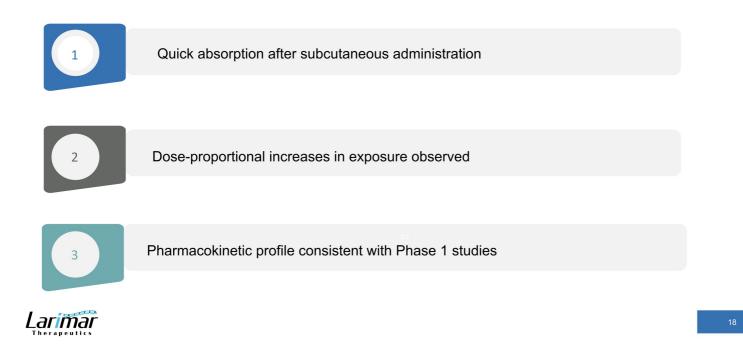
16

Encouraging Therapeutic Potential for Nomlabofusp

Frataxin deficiency is the root cause of the disease

Lower levels of frataxin correlate with disease burden

Animal models show that increasing frataxin mitigates clinical outcomes


Dose-dependent increases in frataxin levels with nomlabofusp in several studies

Continue nomlabofusp clinical development

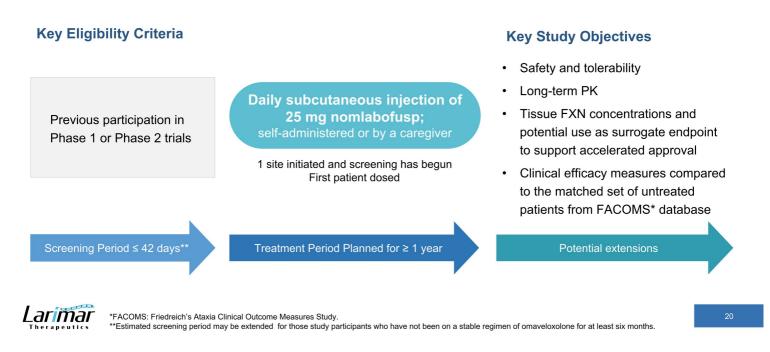
17

Nomlabofusp: Predictable Pharmacokinetics

Ph1 & Ph2 Data: Nomlabofusp is Generally Well Tolerated

61 patients have participated in our Phase 1 and Phase 2 studies with no serious adverse events in any nomlabofusp clinical study. One severe adverse event occurred, an allergic reaction that resolved with standard treatment referenced below.

44 of 46 clinical trial participants dosed with nomlabofusp completed their respective study One Phase 2 participant in the 25 mg cohort withdrew due to allergic reaction that resolved with standard treatment One Phase 1 participant in the 50 mg cohort withdrew due to mild-to-moderate nausea and vomiting



Most common adverse events (AEs) were mild and moderate injection site reactions (ISRs) No study discontinuations due to ISRs and all resolved

Open-label Extension Study: Dosed first patient in Q1 2024

Preliminary interim data expected in Q4 2024

Nomlabofusp Clinical Development Plan

Intend to pursue accelerated approval pathway with potential BLA submission targeted for 2H 2025

*Company is discussing with FDA as to what additional clinical trial data in adults would inform inclusion of pediatric patients ages 2 to 17 in our studies. **Company initiated discussions with FDA on the potential use of FXN levels to support accelerated approval. Also, the Company is planning discussions with regulators and investigators outside the U.S. to expand clinical program to international geographies. Initiation of additional U.S. clinical trials is contingent on FDA review of clinical date due to partial clinical hold.

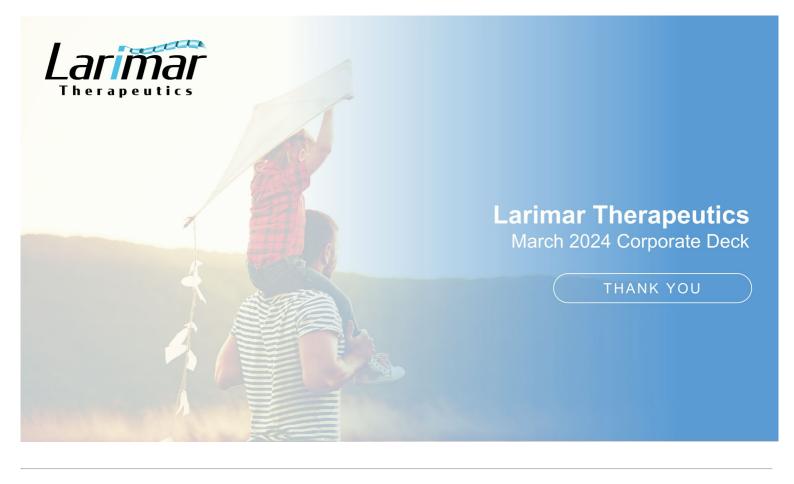
21

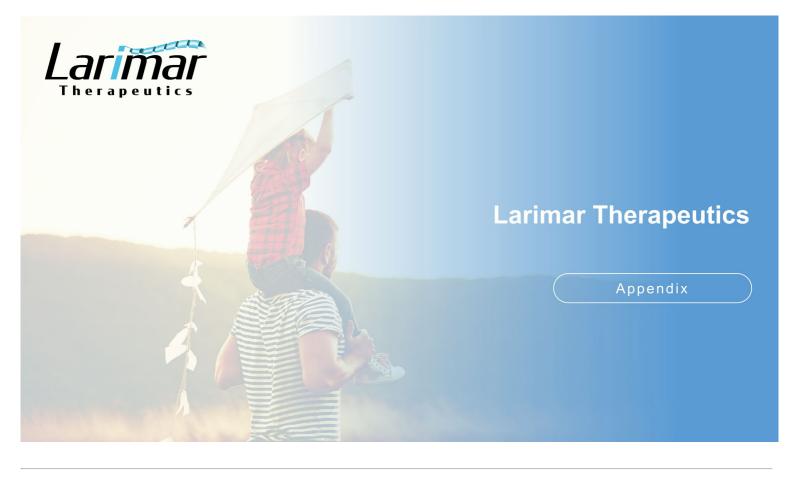
Nomlabofusp is a Competitively Differentiated Treatment Approach*

\$7.3B Acquisition supports the robust market potential for FA treatments

Nomlabofusp is a potential first-and-only protein replacement therapy designed to address the underlying cause of FA

Approach	Product	Company	Mechanism of Action	Clinical Status
Protein replacement	Nomlabofusp (CTI-1601)	Larimar	Recombinant frataxin protein	Phase II
Mitochondrial Oxidative Stress Modifier	Omaveloxolone (SKYCLARYS™)	Reata Pharma/Biogen	Nrf2 Activator	Approved (US and EU)
Stress Modifier	Vatiquinone	PTC Therapeutics	15-Lipoxygenase Inhibitor	Phase III
Gene Expression Regulator	DT-216	Design Therapeutics	GeneTAC	Phase I
Gene Therapy	LX2006	Lexeo Therapeutics	Frataxin Gene Replacement	Phase I/II
Gene Therapy	твр	Voyager/Neurocrine	Frataxin Gene Replacement	Phase 1 planned in 2025


*Competitive landscape focuses on clinical-stage, industry-sponsored programs from public companies


Positive Topline 50 mg & 25 mg Ph 2 Data and Dosed First Patient in OLE

Consistent Ph 1 and Ph 2 Findings	Nomlabofusp is generally well tolerated at doses tested up to 4 weeks Dose-dependent increases in FXN levels from baseline in evaluated tissues (skin and buccal cells) Baseline FXN levels in skin cells in the 50 mg cohort were < 17% of the average of healthy volunteers. After daily dosing for 14 days, FXN levels increased to 33% to 59%	/
Regulatory Updates	Initiated discussions with FDA regarding use of FXN as a surrogate endpoint to support accelerated approval Intend to pursue accelerated approval with potential BLA submission for 2H 2025 Beginning preparations to expand nomlabofusp clinical program to ex-U.S. geographies	
2024/2025 Milestones	 Q1 2024: Dosed first patient in OLE study Q4 2024: Initial data from OLE study 2H 2024: Final Phase 2 data planned to be presented at a conference 2H 2025: BLA submission 	
		23

Clinical-Stage Novel Protein Replacement Therapy Platform

Potential first therapy to increase frataxin levels	Lead candidate nomlabofusp (CTI-1601) is a recombinant fusion protein designed to directly address frataxin deficiency in patients with Friedreich's ataxia (FA) by delivering the protein to mitochondria. Granted Orphan Drug (US & EU), Rare Pediatric Disease (US), Fast Track (US), & PRIME (EU) designations
Consistent Phase 1 and Phase 2 findings	Nomlabofusp was generally well tolerated and demonstrated dose-dependent increases in frataxin (FXN) levels from baseline in skin and buccal cells in a 4-week placebo-controlled Phase 2 study and a multiple ascending dose Phase 1 study
Intend to pursue accelerated approval with FDA	FDA acknowledgement that FXN deficiency appears to be critical to the pathogenic mechanism of FA, and that there continues to be an unmet need for treatments that address the underlying disease pathophysiology. Discussions to support an accelerated approval are ongoing. BLA submission targeted for 2H 2025
OLE study with near-term catalysts	Dosed first patient in OLE study with 25 mg daily dosing in Q1 2024 with interim data expected in Q4 2024 To potentially escalate dose in the OLE study, data from the 50 mg cohort of the Phase 2 study and available data from the OLE study will be submitted for FDA review due to continued partial clinical hold
Strong financial foundation	Cash \$86.8 million estimated* at 12/31/23 plus \$161 million net proceeds from February 2024 public offering provides projected cash runway into 2026
	dited and preliminary and actual results may differ due to the completion of our fiscal 2023 closing procedures. As such, this estimate as a substitute for our full audited financial statements prepared in accordance with U.S. generally accepted accounting principles.

Scientific Advisory Board

Giovanni Manfredi, MD, PhD

Finbar and Marianne Kenny Professor in Clinical and Research Neurology at Weill Cornell Medicine.

Professor of Neuroscience at Weill Cornell Medicine.

MD

Co-founder of Chondrial Therapeutics, which became Larimar Therapeutics, Inc.

Professor of Pediatrics at Indiana University School of Medicine

Executive Director of the Mitochondrial Medicine Frontier Program at The Children's Hospital of Philadelphia (CHOP)

Professor in the Division of Human Genetics, Department of Pediatrics at University of Pennsylvania Perelman School of Medicine

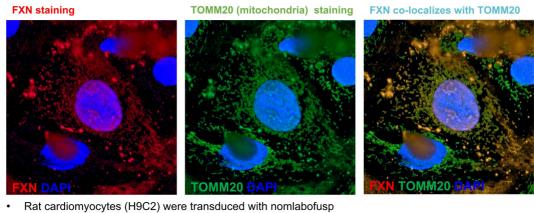
Medical Director and Division Chief of the University of California San Francisco (UCSF) Movement Disorders and Neuromodulation Center.

Carlin and Ellen Wiegner Endowed Professor of Neurology

Strong Relationship with FARA

Company has strong relationship with Friedreich's Ataxia Research Alliance (FARA)

• National, non-profit organization dedicated to the pursuit of scientific research leading to treatments and a cure for FA


FARA provides industry with several key items

- · Assistance with patient recruitment and education
- Access to Global Patient Registry with demographic and clinical information on more than 1,000 FA patients
- Sponsored a Patient-Focused Drug Development Meeting in 2017 resulting in a publication titled "The Voice of the Patient"

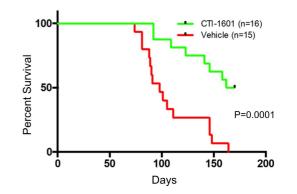
Nomlabofusp Transduction of Cells In Vitro Leads to hFXN Located in Mitochondria

 Cells were fixed and analyzed by immunofluorescence microscopy to detect the presence of human frataxin (hFXN) and TOMM20 (a mitochondrial outer membrane protein)

Nuclei were stained with DAPI

30

Nomlabofusp Extends Survival in FXN-deficient KO Mice


Initial proof-of-concept for FXN replacement therapy in cardiac mouse model of FA

Median survival of MCK-Cre FXN-KO mice

- 166 days (nomlabofusp) vs. 98 days (Vehicle)
- Nomlabofusp administered 10 mg/kg SC every other day

Survival beyond vehicle mean (107.5 days)

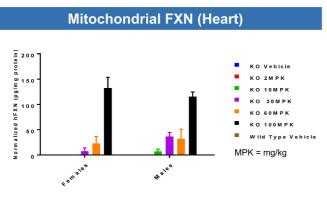
- 87.5% (nomlabofusp) vs. 33% (Vehicle)
- Demonstrates that nomlabofusp is capable of delivering sufficient amounts of FXN to mitochondria

Nomlabofusp (CTI-1601) rescues a severe disease phenotype in a well-characterized cardiac mouse model of FA

31

Nomlabofusp Prevents Development of Ataxic Gait in Neurologic KO Mouse Model

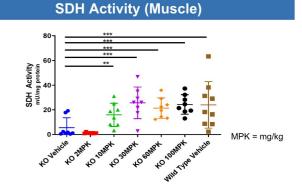
In-Vivo Efficacy Data in Pvalb-Cre FXN-KO Mouse Model


Single dose level: 10 mg/kg nomlabofusp or vehicle given intraperitoneally three times per week

- ⊘ hFXN replacement with nomlabofusp prevents development of ataxic gait
- O Nomlabofusp-treated mice **survive longer** than untreated mice
- Human frataxin **present in brain, dorsal root ganglia and spinal cord** demonstrating central nervous system penetration

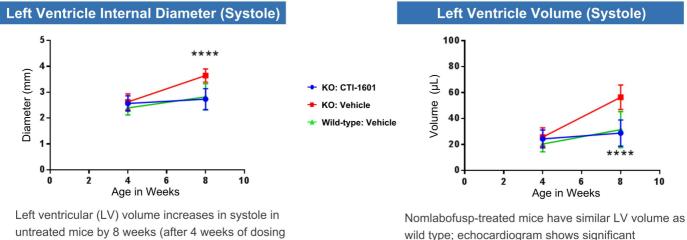
Larimar

Nomlabofusp Delivers hFXN to Mitochondria and Restores SDH Activity in KO Mice


Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at varying SQ doses of nomlabofusp every other day for two weeks at Jackson Laboratories (Bar Harbor, ME). After dosing, animals were sacrificed, and heart and skeletal muscle were evaluated for hFXN concentration in mitochondrial extracts and SDH activity was assessed.

Mitochondria hFXN concentration increases dose-dependently

Given subcutaneously, nomlabofusp functionally replaces hFXN in mitochondria of KO mice



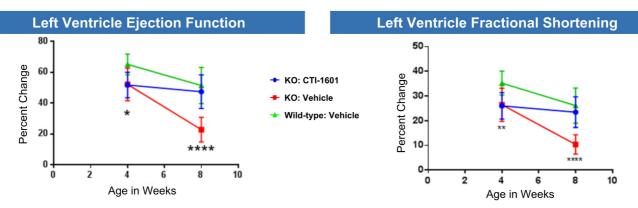
Succinate dehydrogenase (SDH) activity, which is indicative of mitochondrial function, increases in a dose-dependent manner after administration of nomlabofusp; activity plateaus at 30 mg/kg and is equivalent to activity in wild type

Nomlabofusp Prevents Left Ventricle Dilation in KO Mice

Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at 10 mg/kg every other day at Jackson Laboratories (Bar Harbor, ME). Echocardiograms were performed pre-dose and post dose.

untreated mice by 8 weeks (after 4 weeks of dosing with vehicle), but remains similar to wildtype when treated with nomlabofusp (10 mg/kg every other day)

Larimar Therapeutics


34

differences between vehicle and nomlabofusp treated

(10 mg/kg every other day) KO mice

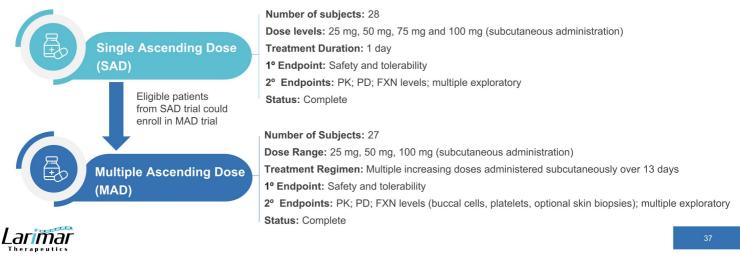
Nomlabofusp Preserves Left Ventricle Function in KO Mice

Study Design – Cardiac and skeletal muscle FXN knockout mice (MCK-CRE) were treated at 10 mg/kg every other day at Jackson Laboratories (Bar Harbor, ME). Echocardiograms were performed pre-dose and post dose.

Left ventricular (LV) function drops significantly in vehicle treated mice by Week 8

Nomlabofusp-treated (10 mg/kg every other day) mice have similar LV function as wildtype; echocardiogram shows significant differences between vehicle and nomlabofusp treated KO mice

Larimar

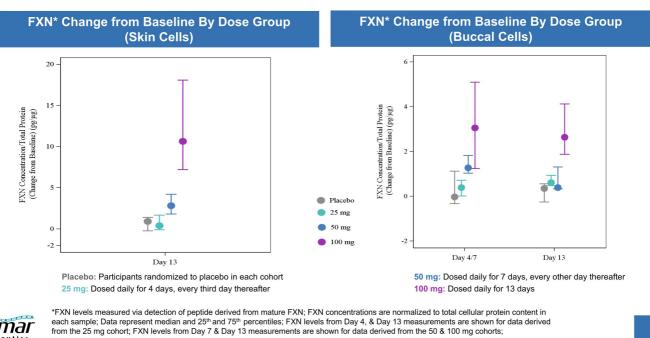


CTI-1601: Phase 1 Clinical Program in Patients with FA

Program consisted of double-blind, placebo controlled single- and multiple-ascending dose trials

Phase 1 Development Plan

- · Two double-blind, placebo-controlled dosing trials in patients with FA
- Patient dosing began December 2019
- · Safety Review Committee assessed all blinded data between each cohort to ensure patient safety



Completed Phase 1 Multiple Ascending Dose Study

	Cohort 1 (25 mg; n = 8)		Cohort 2 (50 mg; n = 9)	Cohort 3 (100 mg n = 10)		
	13-day Treatment Period	1	3-day Treatment Period	13-day Treatment Period		
1 2 3 4	5 6 7 8 9 10 11 12 13 14	1 2 3 4 5 6 7 8 9 10 11 12 13 14		1 2 3 4 5 6 7 8 9 10 11 12 13 1		
= Administration of nomlabofusp or placebo = No Administration		Administration of nomlabofusp or placeboNo Administration		= Administration of nomlabofusp or placet = No Administration		
	FXN L	evel Sampli	ng Days Presented for Each	Cohort		
	Cohort 1 Sampling Days		Cohort 2 Sampling Days		Cohort 3 Sampling Days	
	Cohort 1 Sampling Days	C	Cohort 2 Sampling Days	(Cohort 3 Sampling Days	
Buccal Cells	Cohort 1 Sampling Days Baseline, Day 4, Day 13	Buccal Cells	Cohort 2 Sampling Days Baseline, Day 7, Day 13	Buccal Cells	Cohort 3 Sampling Days Baseline, Day 7, Day 13	
Buccal		Buccal		Buccal		

Dose Dependent Increases in FXN Levels Observed in Skin and Buccal Cells in Phase 1

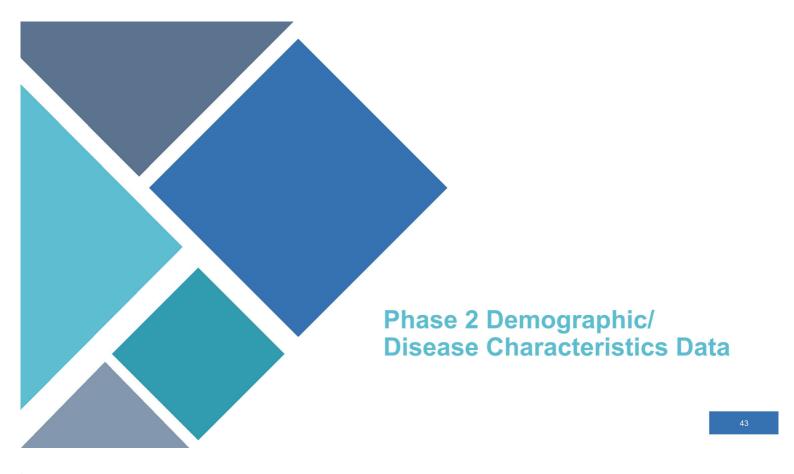
MAD Trial Patient Demographics

Parameter	Statistic	All placebo (n=7)	25 mg CTI-1601 (n=6)	50 mg CTI-1601 (n=7)	100 mg CTI-1601 (n=7)	All CTI-1601 (n=20)	Overall (n=27)
Sex							
Male	n (%)	5 (71.4)	3 (50.0)	4 (57.1)	3 (42.9)	10 (50.0)	15 (55.6)
Female	n (%)	2 (28.6)	3 (50.0)	3 (42.9)	4 (57.1)	10 (50.0)	12 (44.4)
Age (years)							
	Mean	25.7	39.7	34.7	28.0	33.9	31.7
	SD	6.37	16.59	9.03	8.96	12.13	11.40
	Median	23	37	36	24	34	28
	Min, Max	20,36	21,65	19,47	20,44	19,65	19,65
Race							
White	n (%)	6 (85.7)	6 (100.0)	6 (85.7)	6 (85.7)	18 (90.0)	24 (88.9)
Asian	n (%)	0	0	1 (14.3)	1 (14.3)	2 (10.0)	2 (7.4)
American Indian	n (%)	1 (14.3)	0	0	0	0	1 (3.7)
Ethnicity							
Hispanic/Latino	n (%)	2 (28.6)	0	0	0	0	2 (7.4)
Not Hispanic/Latino	n (%)	5 (71.4)	6 (100.0)	7 (100.0)	7 (100.0)	20 (100.0)	25 (92.6)

SD: Standard deviation

MAD Trial Patient Disease Characteristics

Parameter	Statistic	All placebo (n=7)	25 mg CTI-1601 (n=6)	50 mg CTI-1601 (n=7)	100 mg CTI-1601 (n=7)	All CTI-1601 (n=20)	Overall (n=27)
Age at Symptom Onset							
	Mean	14.1	24.0	19.3	11.9	18.1	17.1
	SD	5.34	14.48	6.21	6.72	10.37	9.39
	Median	15.0	18.0	19.0	10.0	18.0	16.0
	Min, Max	8,23	12,44	8,28	5,22	5,44	5,44
Age at Diagnosis							
	Mean	18.3	31.5	26.4	15.9	24.3	22.7
	SD	7.87	19.88	4.28	8.21	13.24	12.23
	Median	20.0	25.5	28.0	13.0	27.0	21.0
	Min, Max	9,32	14,64	17,30	5,27	5,64	5,64
Assistive Device							
Walker	n (%)	0	2 (33.3)	3 (42.9)	0	5 (25.0)	5 (18.5)
Wheelchair	n (%)	4 (57.1)	3 (50.0)	1 (14.3)	6 (85.7)	10 (50.0)	14 (51.9)
Other	n (%)	1 (14.3)	0	1(14.3)	0	1 (5.0)	2 (7.4)
None	n (%)	2 (28.6)	1 (16.7)	2 (28.6)	1 (14.3)	4 (20.0)	6 (22.2)



SD: Standard deviation

PK analyses support evaluating once-daily and every-other-day dosing regimens for CTI-1601

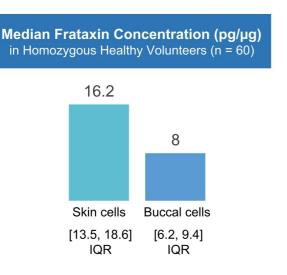
Summary of MAD Trial PK Analyses

- \bigcirc CTI-1601 was quickly absorbed after subcutaneous administration
- O Dose-proportional increases in exposure observed with increasing doses of CTI-1601
- Ø Mean half life of CTI-1601 in plasma was approximately 11 hours
- CTI-1601 appeared to be at or close to steady state exposure after 13 days of dosing 100 mg once daily

Demographics – Phase 2 Trial

	25 mg Cohort				50 mg Cohort		
	Placebo N = 4	Nomlabofusp <i>N</i> = 9	Overall N = 13	Placebo N = 5	Nomlabofusp <i>N</i> = 10	Overall N = 15	
Age at Screening (Years)							
Mean (SD)	34.0 (9.20)	37.8 (14.93)	36.6 (13.16)	28.6 (4.67)	28.1 (11.00)	28.3 (9.17)	
Median	33	31	31	27	24	26	
Q1, Q3	27, 42	27, 42	27, 42	26, 30	21, 32	21, 32	
Min, Max	25, 45	25, 69	25, 69	24, 36	19, 54	19, 54	
Sex n (%)							
Male	2 (50.0)	5 (55.6)	7 (53.8)	1 (20.0)	4 (40.0)	5 (33.3)	
Female	2 (50.0)	4 (44.4)	6 (46.2)	4 (80.0)	6 (60.0)	10 (66.7)	
Previously Treated with No	omlabofusp n (%)						
Yes	1 (25.0)	3 (33.3)	4 (30.8)	0	1 (10.0)	1 (6.7)	
No	3 (75.0)	6 (66.7)	9 (69.2)	5 (100.0)	9 (90.0)	14 (93.3)	

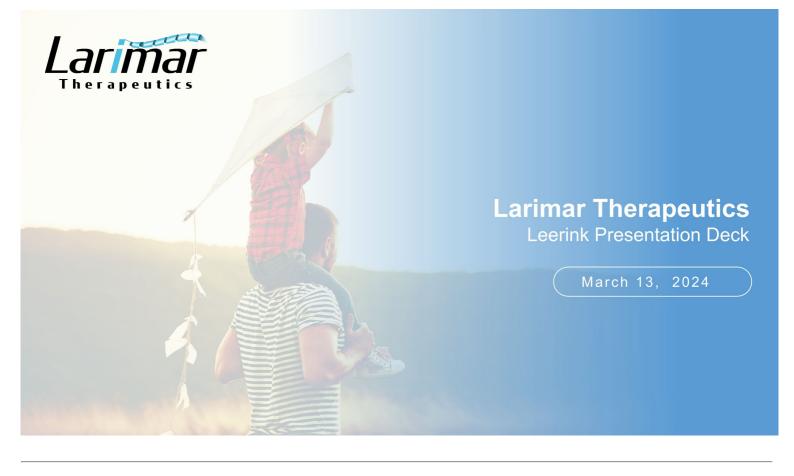
Disease Characteristics – Phase 2 Study


	25 mg Cohort				50 mg Cohort		
	Placebo N = 4	Nomlabofusp N = 9	Overall N = 13	Placebo N = 5	Nomlabofusp N = 10	Overall <i>N</i> = 15	
Age at Symptom Onset ()	Years)						
Mean (SD)	14.5 (4.93)	13.0 (10.47)	13.5 (8.77)	15.2 (7.26)	13.7 (8.37)	14.2 (7.78)	
Median	14.5	10	11	14	12.5	14	
Q1, Q3	11, 19	8, 13	9, 15	11, 16	7, 18	7, 18	
Min, Max	9, 20	5, 38	5, 38	8, 27	5, 30	5, 30	
Age at Diagnosis (Years)							
Mean (SD)	17.5 (5.57)	18.6 (11.20)	18.2 (9.58)	18.6 (6.80)	16.6 (8.03)	17.3 (7.46)	
Median	16.5	16	16	19	13.5	14	
Q1, Q3	14, 22	14, 20	14, 20	13, 20	10, 21	12, 21	
Min, Max	12, 25	5, 42	5, 42	12, 29	9, 30	9, 30	
Γime Since Diagnosis (Ye	ears)						
Mean (SD)	16.1 (5.97)	18.5 (11.52)	17.8 (9.94)	9.5 (3.72)	11.9 (7.05)	11.1 (6.10)	
Median	13.42	14.32	13.5	11	11.26	11	
Q1, Q3	12.9, 19.3	12.8, 21.6	12.8, 21.6	5.8, 11.3	7.4, 15.3	5.8, 15.2	
Min, Max	12.5, 25.0	5.4, 45.0	5.4, 45.0	5.6, 14.0	2.3, 25.1	2.3, 25.1	

CLIN-1601-002: Top-line Non-interventional Study Results

Non-interventional study measured FXN in homozygous healthy volunteers

Most patients with FA only produce ~20-40%¹ of normal frataxin levels depending on the tissue, sampling technique, and assay considered


Lower FXN levels seen with typical onset² (5 to 15 years of age)

Higher FXN levels seen with late onset² (after 25 years of age)

Heterozygous carriers who show no signs of disease have buccal cell FXN levels of \sim 50% of unaffected healthy persons¹

FXN concentrations were measured in skin and buccal cells from 60 homozygous healthy volunteers utilizing the same sampling technique and assay as clinical trials of nomlabofusp; FXN levels measured via detection of peptide derived from mature FXN; FXN concentrations normalized to total cellular protein content in each sample. 1. E.C. Deutsch et al. Molecular Genetics and Metabolism 101 (2010) 238–245. 2. Friedreich's Ataxia Research Alliance

Forward-Looking Statements

This presentation contains forward-looking statements that are based on the beliefs and assumptions of Larimar Therapeutics, Inc. ("Company") and on information currently available to management. All statements contained in this presentation other than statements of historical fact are forward-looking statements, including but not limited to Larimar's ability to develop and commercialize nomlabofusp (CTI-1601) and other planned product candidates, Larimar's planned research and development efforts, including the timing of its nomlabofusp clinical trials and overall development plan and other matters regarding Larimar's business strategies, ability to raise capital, use of capital, results of operations and financial position, and plans and objectives for future operations.

In some cases, you can identify forward-looking statements by the words "may," "will," "could," "should," "expect," "intend," "plan," "anticipate," "believe," "estimate," "predict," "project," "potential," "continue," "ongoing" or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. These statements involve risks, uncertainties and other factors that may cause actual results, performance, or achievements to be materially different from the information expressed or implied by these forward-looking statements. These risks, uncertainties and other factors include, among others, the success, cost and timing of Larimar's product development activities, nonclinical studies and clinical trials, including nomlabofusp clinical milestones and continued interactions with the FDA; that preliminary clinical trial results may differ from final clinical trial results, that earlier non-clinical and clinical data and testing of nomlabofusp may not be predictive of the results or success of later clinical trials, and assessments; that the FDA may not ultimately agree with Larimar's nomlabofusp development strategy; the potential impact of public health crises on Larimar's future clinical trials, manufacturing, regulatory, nonclinical study timelines and operations, and general economic conditions; Larimar's ability and the ability of third-party manufacturers Larimar engages, to optimize and scale nomlabofusp's manufacturing process; Larimar's ability to obtain regulatory approvals for nomlabofusp and future product candidates; Larimar's ability to develop sales and marketing capabilities, whether alone or with potential future collaborators, and to successfully commercialize any approved product candidates; Larimar's ability to raise the necessary capital to conduct its product development activities; and other risks described in the filings made by Larimar with the Securities and Exchange Commission (SEC), including but not limited to Larimar's periodic reports, including the annual report on Form 10-K, quarterly reports on Form 10-Q and current reports on Form 8-K, filed with or furnished to the SEC and available at www.sec.gov. These forward-looking statements are based on a combination of facts and factors currently known by Larimar and its projections of the future, about which it cannot be certain. As a result, the forward-looking statements may not prove to be accurate. The forward-looking statements in this presentation represent Larimar's management's views only as of the date hereof. Larimar undertakes no obligation to update any forward-looking statements for any reason, except as required by law.

Positive Topline Phase 2 Data for Nomlabofusp (CTI-1601)

Successful completion of 4-week, placebo-controlled dose exploration study (25 mg and 50 mg) in FA

Dose-dependent increases in tissue frataxin (FXN) levels in skin and buccal cells

Nomlabofusp was generally well-tolerated following repeated subcutaneous injections up to 28 days

Participants treated with 50 mg for 14 days and then every other day for an additional 14 days until day 28

- Baseline FXN levels in skin cells < 17% of average FXN levels of healthy volunteers
- After 14 days of daily dosing, FXN levels in skin cells increased to 33% to 59% of average FXN level of healthy volunteers
- After switching to every other day dosing on day 15, continue to observe dose dependent increases in FXN levels with reduced magnitude

All treated patients in the 50 mg dose group had at least a 100% increase over baseline in FXN levels in skin cells at day 14

Across all studies to date, higher variability in FXN levels was observed in buccal vs. skin cells

FA: Friedreich's ataxia; OLE: Open-label extension; BLA: Biologics License Application

OLE trial initiated for 25 mg daily dosing

High patient interest in study participation First patient dosed in March 2024 Initial data expected Q4 2024

Intend to Pursue Accelerated Approval with FDA

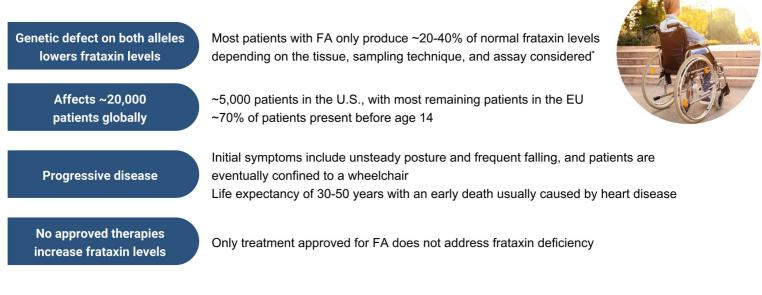
Discussions initiated on FXN as surrogate endpoint Potential **BLA submission targeted for 2H 2025**

Clinical-Stage Novel Protein Replacement Therapy Platform

Potential first therapy to increase frataxin levels	Lead candidate nomlabofusp (CTI-1601) is a recombinant fusion protein designed to directly address frataxin deficiency in patients with Friedreich's ataxia (FA) by delivering the protein to mitochondria. Granted Orphan Drug (US & EU), Rare Pediatric Disease (US), Fast Track (US), & PRIME (EU) designations
Consistent Phase 1 and Phase 2 findings	Nomlabofusp was generally well tolerated and demonstrated dose-dependent increases in frataxin (FXN) levels from baseline in skin and buccal cells in a 4-week placebo-controlled Phase 2 study and a multiple ascending dose Phase 1 study
Intend to pursue accelerated approval with FDA	FDA acknowledgement that FXN deficiency appears to be critical to the pathogenic mechanism of FA, and that there continues to be an unmet need for treatments that address the underlying disease pathophysiology. Discussions to support an accelerated approval are ongoing. BLA submission targeted for 2H 2025
OLE study with near-term catalysts	Initiated OLE study with 25 mg daily dosing in Q1 2024 with interim data expected in Q4 2024 To potentially escalate dose in the OLE study, data from the 50 mg cohort of the Phase 2 study and available data from the OLE study will be submitted for FDA review due to continued partial clinical hold
Strong financial foundation	Cash- \$86.8 million estimated* at 12/31/23 plus \$161 million net proceeds from February 2024 public offering provides projected cash runway into 2026
	udited and preliminary and actual results may differ due to the completion of our fiscal 2023 closing procedures. As such, this estimate as a substitute for our full audited financial statements prepared in accordance with U.S. generally accepted accounting principles.

Larimar Technology is Supported by a Strong IP Portfolio

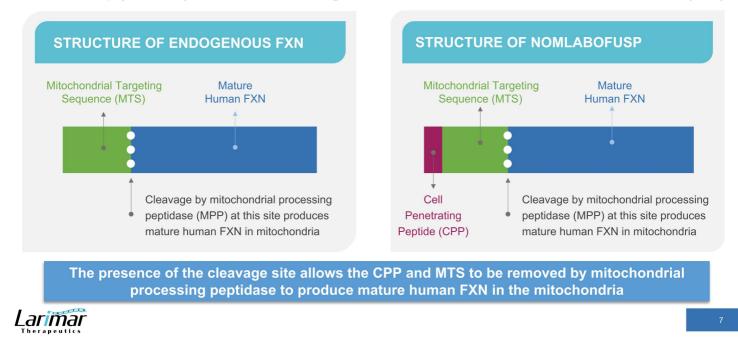
Granted nomlabofusp (CTI-1601) composition of matter patent extends into 2040


- US and foreign pending applications cover key biomarkers, analytical tools and methods of treatment for additional disease indications for nomlabofusp
- Nomlabofusp should be eligible for **12 years of market exclusivity** upon approval in the US (independent of patents) and at least **10 years of market** exclusivity upon approval in EU (independent of patents)

Granted

Pending

Friedreich's Ataxia (FA): A rare and progressive disease



* E.C. Deutsch et al. Molecular Genetics and Metabolism 101 (2010) 238–245.

Nomlabofusp is Designed to Deliver Additional Frataxin

Nomlabofusp (CTI-1601) maintains the cleavage site between the MTS and mature human frataxin (FXN)

FXN Levels Predict Disease Progression in FA

Lower FXN levels are associated with earlier onset of disease, faster rate of disease progression, and shorter time to loss of ambulation

Median Age of Onset and Rate of Disease Progression in Relation to FXN Levels

FXN Level* (% of Normal Level)	Age of Onset (Years)	FARS ** (Change/Year)
11.2	7	2.9
22.0	11	2.1
31.0	16	2.0
48.7	19	1.6

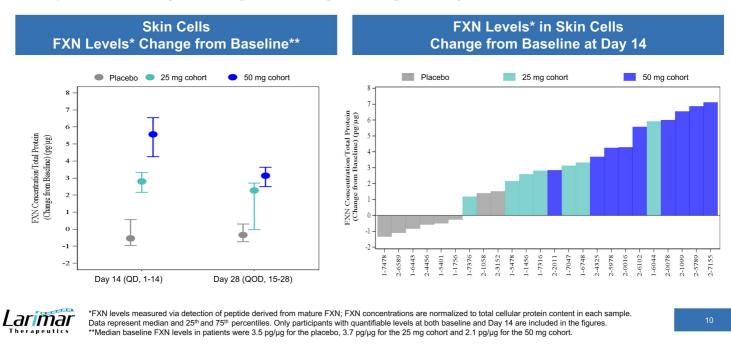
Adapted from H.L.Plasterer et al. PLoS ONE 2013 8(5):e63958

Median Age of Onset Predicts Time to Loss of Ambulation

Age of Onset (Years)	Median Time to Loss of Ambulation (Years)
< 15	11.5
15 to 24	18.3
> 24	23.5

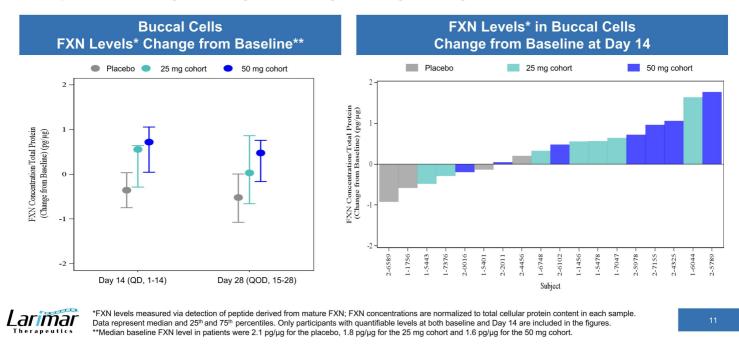
Adapted from C. Rummey et al. EClinicalMedicine. 2020 18:100213

*FXN levels measured in peripheral blood mononuclear cells (PBMCs). FXN levels as measured by % of normal demonstrated to be equivalent in PBMCs, buccal cells, and whole blood. **FARS: Friedreich's ataxia rating score, measures disease progression with a higher score indicating a greater level of disability.


Phase 2 Dose Exploration Study for 25 and 50 mg Cohorts

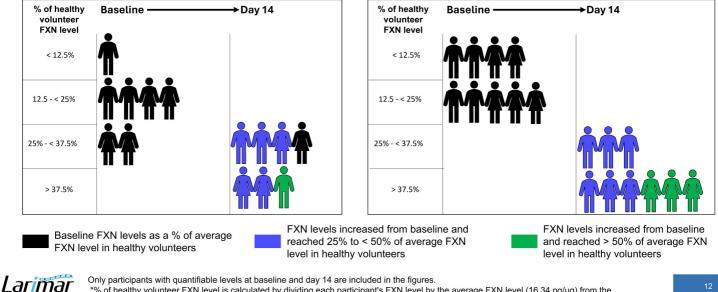
Goal: Further characterize PK/PD and assess safety to inform long-term dose and dose regimen

	Treatment Schedule - nomlabofusp (CTI-1601) or placebo						
	28-day Treatment Period						
1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28						
_	taneous administration of nomlabofusp (CTI-1601) or placebo						
= No Adı	ninistration						
	Study Details						
Population	Ambulatory and non-ambulatory Friedreich's ataxia patients ≥18 years of age Nomlabofusp (CTI-1601) treatment naïve or participated (if eligible) in a previous Larimar study						
Dose	Cohort 1: 25 mg Cohort 2: 50 mg						
Key Endpoints	Frataxin levels in peripheral tissue, PK, safety and tolerability; other exploratory endpoints include lipids and gene expression levels						
Number of Patients	Cohort 1: Enrolled 13 participants (9 on nomlabofusp; 4 on placebo) Cohort 2: Enrolled 15 participants (10 on nomlabofusp; 5 on placebo)						
	9						


Dose-Dependent Increase in FXN Levels in Skin Cells

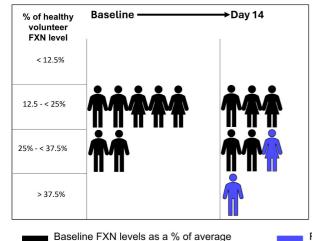
Participants dosed daily for 14 days, then every other day until day 28

Dose-Dependent Increase in FXN Levels in Buccal Cells

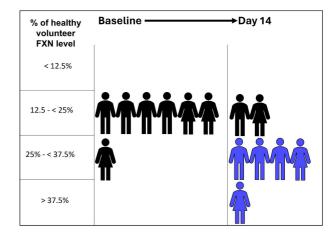

Participants dosed daily for 14 days, then every other day until day 28

Skin Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

50 mg of Nomlabofusp


25 mg of Nomlabofusp

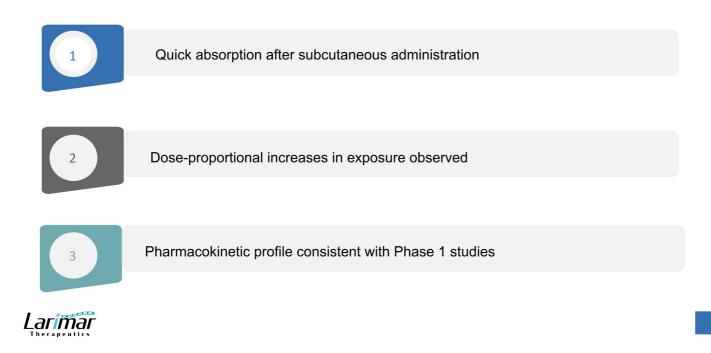
*% of healthy volunteer FXN level is calculated by dividing each participant's FXN level by the average FXN level (16.34 pg/µg) from the noninterventional healthy volunteer study (N=60).


Buccal Cell FXN Levels Achieve Higher % of Healthy Volunteers* Following 14 days of Daily Nomlabofusp

25 mg of Nomlabofusp

FXN level in healthy volunteers

50 mg of Nomlabofusp



FXN levels increased from baseline and reached 25% to < 50% of average FXN level in healthy volunteers

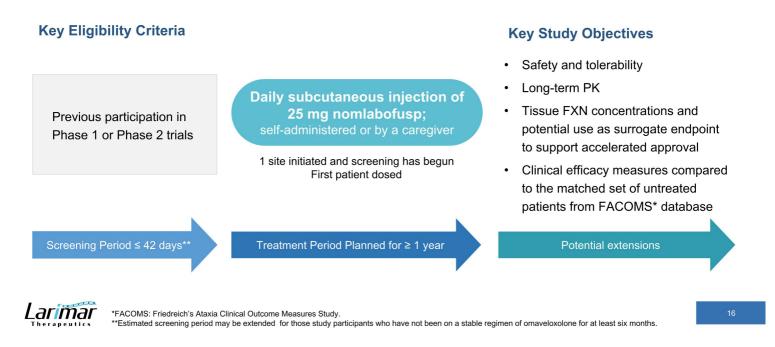
Only participants with quantifiable levels at baseline and day 14 are included in the figures. *% of healthy volunteer FXN level is calculated by dividing each participant's FXN level by the average FXN level (8.24 pg/µg) from Larimar's noninterventional healthy volunteer study (N=60).

Nomlabofusp: Predictable Pharmacokinetics

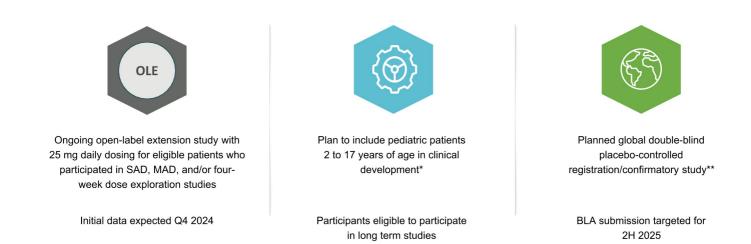
Ph1 & Ph2 Data: Nomlabofusp is Generally Well Tolerated

61 patients have participated in our Phase 1 and Phase 2 studies with no serious adverse events in any nomlabofusp clinical study. One severe adverse event (allergic reaction that resolved with standard treatment referenced below).

44 of 46 clinical trial participants dosed with nomlabofusp completed their respective study One Phase 2 participant in the 25 mg cohort withdrew due to allergic reaction that resolved with standard treatment One Phase 1 participant in the 50 mg cohort withdrew due to mild-to-moderate nausea and vomiting



Most common adverse events (AEs) were mild and moderate injection site reactions (ISRs) No study discontinuations due to ISRs and all resolved


Open-label Extension Study: Initiated Q1 2024

Preliminary interim data expected in Q4 2024

Nomlabofusp Clinical Development Plan

Intend to pursue accelerated approval pathway with potential BLA submission targeted for 2H 2025

*Company is discussing with FDA as to what additional clinical trial data in adults would inform inclusion of pediatric patients ages 2 to 17 in our studies. **Company initiated discussions with FDA on the potential use of FXN levels to support accelerated approval. Also, the Company is planning discussions with regulators and investigators outside the U.S. to expand clinical program to international geographies. Initiation of additional U.S. clinical trials is contingent on FDA review of clinical date due to partial clinical hold.

Positive Topline 50 mg & 25 mg Ph 2 Data and OLE Initiated in Q1 2024

Consistent Ph 1 and Ph 2 Findings	Nomlabofusp is generally well tolerated at doses tested up to 4 weeks Dose-dependent increases in FXN levels from baseline in evaluated tissues (skin and buccal cells) Baseline FXN levels in skin cells in the 50 mg cohort were < 17% of the average of healthy volunteers. After dail dosing for 14 days, FXN levels increased to 33% to 59%	y
Regulatory Updates	Initiated discussions with FDA regarding use of FXN as a surrogate endpoint to support accelerated approval Intend to pursue accelerated approval with potential BLA submission for 2H 2025 Beginning preparations to expand nomlabofusp clinical program to ex-U.S. geographies	
2024/2025 Milestones	 Q1 2024: Dosed first patient in OLE study Q4 2024: Initial data from OLE study; initiated in Q1 2024 2H 2024: Final Phase 2 data planned to be presented at a conference 2H 2025: BLA submission 	
		18

Larimar Therapeutics Leerink Presentation Deck

Leerink Presentation Deck March 13, 2024 THANK YOU